{"title":"CRISPR-Based Regulation for High-Throughput Screening","authors":"Lingling Jiao, Qi Zhou and Dongchang Sun*, ","doi":"10.1021/acssynbio.5c0007610.1021/acssynbio.5c00076","DOIUrl":null,"url":null,"abstract":"<p >CRISPR technology has revolutionized genome editing by enabling precise, permanent modifications to genetic material. To circumvent the irreversible alterations associated with traditional CRISPR methods and facilitate research on both essential and nonessential genes, CRISPR interference or inhibition (CRISPRi) and CRISPR activation (CRISPRa) were developed. The gene-silencing approach leverages an inactivated Cas effector protein paired with guide RNA to obstruct transcription initiation or elongation, while the gene-activation approach exploits the programmability of CRISPR to activate gene expression. Recent advances in CRISPRi technology, in combination with other technologies (e.g., biosensing, sequencing), have significantly expanded its applications, allowing for genome-wide high-throughput screening (HTS) to identify genetic determinants of phenotypes. These screening strategies have been applied in biomedicine, industry, and basic research. This review explores the CRISPR regulation mechanisms, offers an overview of the workflow for genome-wide CRISPR-based regulation for screens, and highlights its superior suitability for HTS across biomedical and industrial applications. Finally, we discuss the limitations of current CRISPRi/a HTS screening methods and envision future directions in CRISPR-mediated HTS research, considering its potential for broader application across diverse fields.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 6","pages":"1890–1904 1890–1904"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.5c00076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR technology has revolutionized genome editing by enabling precise, permanent modifications to genetic material. To circumvent the irreversible alterations associated with traditional CRISPR methods and facilitate research on both essential and nonessential genes, CRISPR interference or inhibition (CRISPRi) and CRISPR activation (CRISPRa) were developed. The gene-silencing approach leverages an inactivated Cas effector protein paired with guide RNA to obstruct transcription initiation or elongation, while the gene-activation approach exploits the programmability of CRISPR to activate gene expression. Recent advances in CRISPRi technology, in combination with other technologies (e.g., biosensing, sequencing), have significantly expanded its applications, allowing for genome-wide high-throughput screening (HTS) to identify genetic determinants of phenotypes. These screening strategies have been applied in biomedicine, industry, and basic research. This review explores the CRISPR regulation mechanisms, offers an overview of the workflow for genome-wide CRISPR-based regulation for screens, and highlights its superior suitability for HTS across biomedical and industrial applications. Finally, we discuss the limitations of current CRISPRi/a HTS screening methods and envision future directions in CRISPR-mediated HTS research, considering its potential for broader application across diverse fields.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.