{"title":"Prediction of the most fire‐sensitive point in building structures with differentiable agents for thermal simulators","authors":"Yuan Xinjie, Khalid M. Mosalam","doi":"10.1111/mice.13534","DOIUrl":null,"url":null,"abstract":"Fire safety is crucial for ensuring the stability of building structures, yet evaluating whether a structure meets fire safety requirements is challenging. Fires can originate at any point within a structure, and simulating every potential fire scenario is both expensive and time‐consuming. To address this challenge, we propose the concept of the most fire‐sensitive point (MFSP) and an efficient machine learning framework for its identification. The MFSP is defined as the location at which a fire, if initiated, would cause the most severe detrimental impact on the building's stability, effectively representing the worst‐case fire scenario. In our framework, a graph neural network serves as an efficient and differentiable agent for conventional finite element analysis simulators by predicting the maximum interstory drift ratio under fire, which then guides the training and evaluation of the MFSP predictor. Additionally, we enhance our framework with a novel edge update mechanism and a transfer learning‐based training scheme. Evaluations on a large‐scale simulation dataset demonstrate the good performance of the proposed framework in identifying the MFSP, offering a transformative tool for optimizing fire safety assessments in structural design. All developed datasets and codes are open‐sourced online.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"24 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13534","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Fire safety is crucial for ensuring the stability of building structures, yet evaluating whether a structure meets fire safety requirements is challenging. Fires can originate at any point within a structure, and simulating every potential fire scenario is both expensive and time‐consuming. To address this challenge, we propose the concept of the most fire‐sensitive point (MFSP) and an efficient machine learning framework for its identification. The MFSP is defined as the location at which a fire, if initiated, would cause the most severe detrimental impact on the building's stability, effectively representing the worst‐case fire scenario. In our framework, a graph neural network serves as an efficient and differentiable agent for conventional finite element analysis simulators by predicting the maximum interstory drift ratio under fire, which then guides the training and evaluation of the MFSP predictor. Additionally, we enhance our framework with a novel edge update mechanism and a transfer learning‐based training scheme. Evaluations on a large‐scale simulation dataset demonstrate the good performance of the proposed framework in identifying the MFSP, offering a transformative tool for optimizing fire safety assessments in structural design. All developed datasets and codes are open‐sourced online.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.