Optimization of Fully Inorganic Pb‐Sn Gradient Perovskite Solar Cells Using Solar Cell Capacitance Simulator

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Wei Luo, Xin Guo, Dawei Yun, Jian Han
{"title":"Optimization of Fully Inorganic Pb‐Sn Gradient Perovskite Solar Cells Using Solar Cell Capacitance Simulator","authors":"Wei Luo, Xin Guo, Dawei Yun, Jian Han","doi":"10.1002/adts.202500068","DOIUrl":null,"url":null,"abstract":"Fully inorganic Pb‐Sn perovskite solar cells exhibit excellent photovoltaic conversion efficiency and stability, positioning them as strong competitors to conventional organic–inorganic hybrid perovskite solar cells. By introducing a gradient distribution of Pb and Sn in the perovskite absorber layer, the energy band structure can be optimized and a built‐in electric field can be created within the absorber layer, affecting carrier transport and separation. In this paper, a new structural perovskite solar cell model of F‐doped Tin Oxide/hole transport layer/all inorganic Pb‐Sn gradient perovskite/electron transport layer/MoS<jats:sub>2</jats:sub>/Ag is proposed, and the structure is optimized and simulated by Solar Cell Capacitance Simulator. First the effects of gradient distribution, doping density, and defect density of the absorber layer are analyzed on the device, and then introduced the 2D material MoS<jats:sub>2</jats:sub> as the interface layer. The device performance can be improved by tuning the energy band structure when inserting a 10 nm MoS<jats:sub>2</jats:sub> layer, and an energy conversion efficiency of 21.06% is obtained. Finally, the effects of interface defects and different transmission layer materials on the device are considered, and the final optimized device performance parameters are <jats:italic>V</jats:italic><jats:sub>OC</jats:sub> = 0.75V, <jats:italic>J</jats:italic><jats:sub>SC</jats:sub> = 32.1 mA cm<jats:sup>−2</jats:sup>, FF = 75.05%, PCE = 17.94%.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"39 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fully inorganic Pb‐Sn perovskite solar cells exhibit excellent photovoltaic conversion efficiency and stability, positioning them as strong competitors to conventional organic–inorganic hybrid perovskite solar cells. By introducing a gradient distribution of Pb and Sn in the perovskite absorber layer, the energy band structure can be optimized and a built‐in electric field can be created within the absorber layer, affecting carrier transport and separation. In this paper, a new structural perovskite solar cell model of F‐doped Tin Oxide/hole transport layer/all inorganic Pb‐Sn gradient perovskite/electron transport layer/MoS2/Ag is proposed, and the structure is optimized and simulated by Solar Cell Capacitance Simulator. First the effects of gradient distribution, doping density, and defect density of the absorber layer are analyzed on the device, and then introduced the 2D material MoS2 as the interface layer. The device performance can be improved by tuning the energy band structure when inserting a 10 nm MoS2 layer, and an energy conversion efficiency of 21.06% is obtained. Finally, the effects of interface defects and different transmission layer materials on the device are considered, and the final optimized device performance parameters are VOC = 0.75V, JSC = 32.1 mA cm−2, FF = 75.05%, PCE = 17.94%.
利用太阳能电池电容模拟器优化全无机Pb - Sn梯度钙钛矿太阳能电池
全无机Pb - Sn钙钛矿太阳能电池表现出优异的光伏转换效率和稳定性,使其成为传统有机-无机混合钙钛矿太阳能电池的有力竞争对手。通过在钙钛矿吸收层中引入Pb和Sn的梯度分布,可以优化能带结构,并在吸收层内形成内建电场,从而影响载流子的输运和分离。本文提出了F掺杂氧化锡/空穴输运层/全无机Pb - Sn梯度钙钛矿/电子输运层/MoS2/Ag的钙钛矿太阳电池新结构模型,并用solar cell电容模拟器对其结构进行了优化和仿真。首先分析了吸收层的梯度分布、掺杂密度和缺陷密度对器件的影响,然后引入二维材料MoS2作为界面层。当插入10 nm的MoS2层时,可以通过调整能带结构来提高器件性能,获得21.06%的能量转换效率。最后,考虑了界面缺陷和不同传输层材料对器件的影响,最终优化的器件性能参数为VOC = 0.75V, JSC = 32.1 mA cm−2,FF = 75.05%, PCE = 17.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信