Combining structural and chemical heterogeneities on the nanoscale to enable ductile solid solution with record-high specific strength

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qinghui Tang, Xingwang Cheng, Fan Zhang, Shipan Yin, Jingyao He, Zigao Zhang, Fei Zhang, Qingjin Zeng, Zezhou. Li, Hongmei Zhang, Junping Li, Evan Ma
{"title":"Combining structural and chemical heterogeneities on the nanoscale to enable ductile solid solution with record-high specific strength","authors":"Qinghui Tang, Xingwang Cheng, Fan Zhang, Shipan Yin, Jingyao He, Zigao Zhang, Fei Zhang, Qingjin Zeng, Zezhou. Li, Hongmei Zhang, Junping Li, Evan Ma","doi":"10.1016/j.actamat.2025.121270","DOIUrl":null,"url":null,"abstract":"Heterogeneous nanostructuring can strengthen metallic materials without excessive degradation in strain hardening and ductility. Here we show that the complex concentrated make-up in multi-principal element alloys makes it feasible to combine structural and chemical heterogeneities together, both at high levels and on the nanoscale, as demonstrated in a lightweight (Ti<sub>55</sub>V<sub>30</sub>Zr<sub>15</sub>)<sub>95</sub>Al<sub>5</sub> alloy (∼ 5.16 g/cm<sup>3</sup>). First, the pronounced local chemical ordering (LCO) promotes “dislocation channels” upon room-temperature rolling. This micro-deformation localization induces numerous nano-deformation bands, many of which are refined into nanocrystalline grains during extended cold rolling. Second, subsequent ageing leads to spinodal decomposition, thereby introducing compositional undulations on the nanoscale. Combined structural and chemical heterogeneities promote strengthening and strain hardening, leading to a record-high yield strength (∼ 1.7 GPa) and specific yield strength (326 MPa·cm<sup>3</sup>·g<sup>-1</sup>), while retaining a respectable elongation-to-failure over 10%, a combination unprecedented in previous lightweight alloys. Our success showcases a novel heterogeneity strategy that achieves unusually high strength without hard precipitates, opening a solid solution route towards high-performance lightweight alloys.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"180 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121270","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous nanostructuring can strengthen metallic materials without excessive degradation in strain hardening and ductility. Here we show that the complex concentrated make-up in multi-principal element alloys makes it feasible to combine structural and chemical heterogeneities together, both at high levels and on the nanoscale, as demonstrated in a lightweight (Ti55V30Zr15)95Al5 alloy (∼ 5.16 g/cm3). First, the pronounced local chemical ordering (LCO) promotes “dislocation channels” upon room-temperature rolling. This micro-deformation localization induces numerous nano-deformation bands, many of which are refined into nanocrystalline grains during extended cold rolling. Second, subsequent ageing leads to spinodal decomposition, thereby introducing compositional undulations on the nanoscale. Combined structural and chemical heterogeneities promote strengthening and strain hardening, leading to a record-high yield strength (∼ 1.7 GPa) and specific yield strength (326 MPa·cm3·g-1), while retaining a respectable elongation-to-failure over 10%, a combination unprecedented in previous lightweight alloys. Our success showcases a novel heterogeneity strategy that achieves unusually high strength without hard precipitates, opening a solid solution route towards high-performance lightweight alloys.

Abstract Image

在纳米尺度上结合结构和化学非均质性,使韧性固溶体具有创纪录的高比强度
非均相纳米结构可以增强金属材料的应变硬化和延展性,而不会过度退化。在这里,我们表明,多主元素合金中复杂的集中组成使得在高水平和纳米尺度上将结构和化学异质性结合在一起是可行的,如轻质(Ti55V30Zr15)95Al5合金(~ 5.16 g/cm3)所证明的那样。首先,明显的局部化学有序(LCO)促进了室温轧制时的“位错通道”。这种微变形局部化产生了大量的纳米变形带,其中许多变形带在延伸冷轧过程中被细化成纳米晶粒。其次,随后的老化导致spinodal分解,从而在纳米尺度上引入成分波动。结构和化学非均质性的结合促进了强化和应变硬化,从而获得了创纪录的高屈服强度(~ 1.7 GPa)和比屈服强度(326 MPa·cm3·g-1),同时保持了超过10%的可观的失效延伸率,这在以前的轻量化合金中是前所未有的。我们的成功展示了一种新的非均质策略,在没有硬析出物的情况下实现了异常高的强度,为高性能轻量化合金开辟了一条固溶体路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信