Revealing the unique evolution and splitting behavior of carbides at atomic-scale in TiAl alloys: the role of elastic interactions and chemical fluctuations
IF 8.3 1区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Li Wang, Yihao Wang, Xiaopeng Liang, Bin Liu, Junyang He, Michael Oehring, Florian Pyczak, Yong Liu
{"title":"Revealing the unique evolution and splitting behavior of carbides at atomic-scale in TiAl alloys: the role of elastic interactions and chemical fluctuations","authors":"Li Wang, Yihao Wang, Xiaopeng Liang, Bin Liu, Junyang He, Michael Oehring, Florian Pyczak, Yong Liu","doi":"10.1016/j.actamat.2025.121277","DOIUrl":null,"url":null,"abstract":"Cubic perovskite-Ti<sub>3</sub>AlC carbides are essential strengthening particles in TiAl alloys, especially for application above 800°C where coarsening is expected to occur. However, these carbides can decompose into small sub-particles upon extended annealing, and the underlying atomic-scale mechanisms, especially structural and compositional changes, driving this unique splitting remain unclear. This study revisits this behavior in a Ti-45Al-5Nb-0.75C alloy utilizing probe-corrected transmission electron microscopy, atom probe tomography and first-principle calculations. The results reveal that the elastic interactions significantly influence carbide evolution. While needle-like carbides transform to intact plates during aging, those in high-density regions tend to coalesce or align along elastically softest γ-matrix directions, forming low-energy plate-like carbide conglomerates. With extended annealing, periodic chemical fluctuations driven by lattice misfit, especially along the needles induce splitting. Simultaneously, a γ<sub>i</sub>-phase with a larger tetragonality and a 90°-rotated c-axis relative to the γ matrix emerges between the sub-particles, which exhibits near-zero lattice mismatch with carbides along [001], combined with mass-center shifts of carbides, further stabilizing the split configurations. This study provides atomic-scale insights into the evolution and stability of strengthening precipitates in systems with tetragonal misfit, and offers new strategies for improving creep properties of TiAl alloys by tailoring carbide configurations.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"22 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121277","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cubic perovskite-Ti3AlC carbides are essential strengthening particles in TiAl alloys, especially for application above 800°C where coarsening is expected to occur. However, these carbides can decompose into small sub-particles upon extended annealing, and the underlying atomic-scale mechanisms, especially structural and compositional changes, driving this unique splitting remain unclear. This study revisits this behavior in a Ti-45Al-5Nb-0.75C alloy utilizing probe-corrected transmission electron microscopy, atom probe tomography and first-principle calculations. The results reveal that the elastic interactions significantly influence carbide evolution. While needle-like carbides transform to intact plates during aging, those in high-density regions tend to coalesce or align along elastically softest γ-matrix directions, forming low-energy plate-like carbide conglomerates. With extended annealing, periodic chemical fluctuations driven by lattice misfit, especially along the needles induce splitting. Simultaneously, a γi-phase with a larger tetragonality and a 90°-rotated c-axis relative to the γ matrix emerges between the sub-particles, which exhibits near-zero lattice mismatch with carbides along [001], combined with mass-center shifts of carbides, further stabilizing the split configurations. This study provides atomic-scale insights into the evolution and stability of strengthening precipitates in systems with tetragonal misfit, and offers new strategies for improving creep properties of TiAl alloys by tailoring carbide configurations.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.