From planning to prognosis: predicting renal function after minimally-invasive partial nephrectomy with artificial intelligence.

IF 4.2 2区 医学 Q1 UROLOGY & NEPHROLOGY
Daniele Amparore, Alberto Piana, Andrea Simeri, Vincenzo Pezzi, Michele DI Dio, Cristian Fiori, Gianluigi Greco, Francesco Porpiglia
{"title":"From planning to prognosis: predicting renal function after minimally-invasive partial nephrectomy with artificial intelligence.","authors":"Daniele Amparore, Alberto Piana, Andrea Simeri, Vincenzo Pezzi, Michele DI Dio, Cristian Fiori, Gianluigi Greco, Francesco Porpiglia","doi":"10.23736/S2724-6051.25.06520-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a machine learning model to predict renal function decline following minimally-invasive partial nephrectomy. Using a dataset of 556 patients treated between 2015 and 2023, the model incorporated patient, tumor, and intraoperative surgical variables - including clamping strategy, resection technique, and renorrhaphy type - to estimate the 3-month postoperative eGFR drop. A Random Forest Regressor outperformed other models, achieving a prediction accuracy of 89.29%, a mean absolute error of 8.09 mL/min/1.73 m<sup>2</sup>, and a strong correlation with observed outcomes (r=0.904, P<10<sup>-42</sup>). These findings support the use of AI for personalized surgical planning and functional outcome prediction in nephron-sparing surgery.</p>","PeriodicalId":53228,"journal":{"name":"Minerva Urology and Nephrology","volume":"77 3","pages":"401-407"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva Urology and Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S2724-6051.25.06520-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a machine learning model to predict renal function decline following minimally-invasive partial nephrectomy. Using a dataset of 556 patients treated between 2015 and 2023, the model incorporated patient, tumor, and intraoperative surgical variables - including clamping strategy, resection technique, and renorrhaphy type - to estimate the 3-month postoperative eGFR drop. A Random Forest Regressor outperformed other models, achieving a prediction accuracy of 89.29%, a mean absolute error of 8.09 mL/min/1.73 m2, and a strong correlation with observed outcomes (r=0.904, P<10-42). These findings support the use of AI for personalized surgical planning and functional outcome prediction in nephron-sparing surgery.

从计划到预后:用人工智能预测微创肾部分切除术后的肾功能。
本研究提出了一种机器学习模型来预测微创部分肾切除术后肾功能下降。该模型使用2015年至2023年期间接受治疗的556例患者的数据集,将患者、肿瘤和术中手术变量(包括夹紧策略、切除技术和再缝合类型)纳入其中,以估计术后3个月的eGFR下降。随机森林回归模型优于其他模型,预测准确率为89.29%,平均绝对误差为8.09 mL/min/1.73 m2,与观察结果有很强的相关性(r=0.904, p = 42)。这些发现支持人工智能在保留肾单元手术中用于个性化手术计划和功能结果预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Minerva Urology and Nephrology
Minerva Urology and Nephrology UROLOGY & NEPHROLOGY-
CiteScore
8.50
自引率
32.70%
发文量
237
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信