{"title":"Enhancing cerebral infarct classification by automatically extracting relevant fMRI features.","authors":"Vitaly I Dobromyslin, Wenjin Zhou","doi":"10.1186/s40708-025-00259-w","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate detection of cortical infarct is critical for timely treatment and improved patient outcomes. Current brain imaging methods often require invasive procedures that primarily assess blood vessel and structural white matter damage. There is a need for non-invasive approaches, such as functional MRI (fMRI), that better reflect neuronal viability. This study utilized automated machine learning (auto-ML) techniques to identify novel infarct-specific fMRI biomarkers specifically related to chronic cortical infarcts. We analyzed resting-state fMRI data from the multi-center ADNI dataset, which included 20 chronic infarct patients and 30 cognitively normal (CN) controls. This study utilized automated machine learning (auto-ML) techniques to identify novel fMRI biomarkers specifically related to chronic cortical infarcts. Surface-based registration methods were applied to minimize partial-volume effects typically associated with lower resolution fMRI data. We evaluated the performance of 7 previously known fMRI biomarkers alongside 107 new auto-generated fMRI biomarkers across 33 different classification models. Our analysis identified 6 new fMRI biomarkers that substantially improved infarct detection performance compared to previously established metrics. The best-performing combination of biomarkers and classifiers achieved a cross-validation ROC score of 0.791, closely matching the accuracy of diffusion-weighted imaging methods used in acute stroke detection. Our proposed auto-ML fMRI infarct-detection technique demonstrated robustness across diverse imaging sites and scanner types, highlighting the potential of automated feature extraction to significantly enhance non-invasive infarct detection.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00259-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate detection of cortical infarct is critical for timely treatment and improved patient outcomes. Current brain imaging methods often require invasive procedures that primarily assess blood vessel and structural white matter damage. There is a need for non-invasive approaches, such as functional MRI (fMRI), that better reflect neuronal viability. This study utilized automated machine learning (auto-ML) techniques to identify novel infarct-specific fMRI biomarkers specifically related to chronic cortical infarcts. We analyzed resting-state fMRI data from the multi-center ADNI dataset, which included 20 chronic infarct patients and 30 cognitively normal (CN) controls. This study utilized automated machine learning (auto-ML) techniques to identify novel fMRI biomarkers specifically related to chronic cortical infarcts. Surface-based registration methods were applied to minimize partial-volume effects typically associated with lower resolution fMRI data. We evaluated the performance of 7 previously known fMRI biomarkers alongside 107 new auto-generated fMRI biomarkers across 33 different classification models. Our analysis identified 6 new fMRI biomarkers that substantially improved infarct detection performance compared to previously established metrics. The best-performing combination of biomarkers and classifiers achieved a cross-validation ROC score of 0.791, closely matching the accuracy of diffusion-weighted imaging methods used in acute stroke detection. Our proposed auto-ML fMRI infarct-detection technique demonstrated robustness across diverse imaging sites and scanner types, highlighting the potential of automated feature extraction to significantly enhance non-invasive infarct detection.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing