Enhancing cerebral infarct classification by automatically extracting relevant fMRI features.

Q1 Computer Science
Vitaly I Dobromyslin, Wenjin Zhou
{"title":"Enhancing cerebral infarct classification by automatically extracting relevant fMRI features.","authors":"Vitaly I Dobromyslin, Wenjin Zhou","doi":"10.1186/s40708-025-00259-w","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate detection of cortical infarct is critical for timely treatment and improved patient outcomes. Current brain imaging methods often require invasive procedures that primarily assess blood vessel and structural white matter damage. There is a need for non-invasive approaches, such as functional MRI (fMRI), that better reflect neuronal viability. This study utilized automated machine learning (auto-ML) techniques to identify novel infarct-specific fMRI biomarkers specifically related to chronic cortical infarcts. We analyzed resting-state fMRI data from the multi-center ADNI dataset, which included 20 chronic infarct patients and 30 cognitively normal (CN) controls. This study utilized automated machine learning (auto-ML) techniques to identify novel fMRI biomarkers specifically related to chronic cortical infarcts. Surface-based registration methods were applied to minimize partial-volume effects typically associated with lower resolution fMRI data. We evaluated the performance of 7 previously known fMRI biomarkers alongside 107 new auto-generated fMRI biomarkers across 33 different classification models. Our analysis identified 6 new fMRI biomarkers that substantially improved infarct detection performance compared to previously established metrics. The best-performing combination of biomarkers and classifiers achieved a cross-validation ROC score of 0.791, closely matching the accuracy of diffusion-weighted imaging methods used in acute stroke detection. Our proposed auto-ML fMRI infarct-detection technique demonstrated robustness across diverse imaging sites and scanner types, highlighting the potential of automated feature extraction to significantly enhance non-invasive infarct detection.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00259-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate detection of cortical infarct is critical for timely treatment and improved patient outcomes. Current brain imaging methods often require invasive procedures that primarily assess blood vessel and structural white matter damage. There is a need for non-invasive approaches, such as functional MRI (fMRI), that better reflect neuronal viability. This study utilized automated machine learning (auto-ML) techniques to identify novel infarct-specific fMRI biomarkers specifically related to chronic cortical infarcts. We analyzed resting-state fMRI data from the multi-center ADNI dataset, which included 20 chronic infarct patients and 30 cognitively normal (CN) controls. This study utilized automated machine learning (auto-ML) techniques to identify novel fMRI biomarkers specifically related to chronic cortical infarcts. Surface-based registration methods were applied to minimize partial-volume effects typically associated with lower resolution fMRI data. We evaluated the performance of 7 previously known fMRI biomarkers alongside 107 new auto-generated fMRI biomarkers across 33 different classification models. Our analysis identified 6 new fMRI biomarkers that substantially improved infarct detection performance compared to previously established metrics. The best-performing combination of biomarkers and classifiers achieved a cross-validation ROC score of 0.791, closely matching the accuracy of diffusion-weighted imaging methods used in acute stroke detection. Our proposed auto-ML fMRI infarct-detection technique demonstrated robustness across diverse imaging sites and scanner types, highlighting the potential of automated feature extraction to significantly enhance non-invasive infarct detection.

通过自动提取相关fMRI特征增强脑梗死分类。
皮质梗死的准确检测对于及时治疗和改善患者预后至关重要。目前的脑成像方法通常需要侵入性程序,主要评估血管和结构白质损伤。有必要采用非侵入性方法,如功能磁共振成像(fMRI),以更好地反映神经元的活力。本研究利用自动机器学习(auto-ML)技术来识别与慢性皮质梗死特异性相关的新型梗死特异性fMRI生物标志物。我们分析了来自多中心ADNI数据集的静息状态fMRI数据,其中包括20名慢性梗死患者和30名认知正常(CN)对照。本研究利用自动机器学习(auto-ML)技术来识别与慢性皮质梗死特异性相关的新型fMRI生物标志物。基于表面的配准方法用于最小化通常与低分辨率fMRI数据相关的部分体积效应。我们在33种不同的分类模型中评估了7种已知的fMRI生物标志物以及107种新的自动生成的fMRI生物标志物的性能。我们的分析确定了6个新的fMRI生物标志物,与以前建立的指标相比,它们大大提高了梗死检测性能。生物标志物和分类器的最佳组合实现了0.791的交叉验证ROC评分,与用于急性卒中检测的弥散加权成像方法的准确性密切匹配。我们提出的自动ml功能磁共振成像梗死检测技术在不同的成像部位和扫描仪类型中表现出鲁棒性,突出了自动特征提取在显著增强非侵入性梗死检测方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信