Developing a prognostic risk model based on circulating tumor cell genes to predict prognosis and provide potential therapeutic strategies in colorectal cancer.
{"title":"Developing a prognostic risk model based on circulating tumor cell genes to predict prognosis and provide potential therapeutic strategies in colorectal cancer.","authors":"Yupeng Zheng, Mian Yang, Hongyi Yi, Tao Peng, Jiaze Sun, Jiazi Yu","doi":"10.21037/tcr-2024-2268","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide. Understanding the genetic and molecular alterations in CRC can improve patient outcomes. Circulating tumor cells (CTCs) are crucial in cancer metastasis and progression. Analyzing the differentially expressed genes (DEGs) between CTCs and CRC may provide us with new therapeutic strategies. Therefore, this study aims to analyze these DEGs to construct a prognostic risk model that predicts the outcomes of CRC patients and guides clinical treatment.</p><p><strong>Methods: </strong>We analyzed The Cancer Genome Atlas (TCGA) database to identify 1,727 DEGs between CRC and normal samples, and GSE82198 data to find 3,564 DEGs between CTCs and primary CRC samples. Using enrichment analysis, least absolute shrinkage and selection operator (LASSO) regression, and stepwise Cox regression, we derived eight model genes to construct a prognostic risk model. Various algorithms were employed in the immune microenvironment analysis. Integrating clinical factors with risk grouping, we developed a nomogram. We assessed chemotherapy sensitivity and epithelial-mesenchymal transition (EMT) scores in high-/low-risk groups and explored model gene expression at the single-cell level.</p><p><strong>Results: </strong>We constructed a prognostic risk model for CRC based on eight DEGs of CTCs. The model effectively predicted treatment outcomes and correlated closely with actual prognosis. Through immune microenvironment analysis, we revealed differences in immune cell infiltration and checkpoint gene expression among different risk groups. Moreover, patients in the high-risk group showed higher sensitivity to chemotherapy drugs compared to those in the low-risk group.</p><p><strong>Conclusions: </strong>The prognosis model based on CTCs' DEGs can effectively predict patient outcomes, facilitating precision treatment for patients. This model holds significant guiding implications for immunotherapy and chemotherapy in CRC, offering potential strategies for the clinical treatment of CRC.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"14 5","pages":"3096-3112"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-2024-2268","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide. Understanding the genetic and molecular alterations in CRC can improve patient outcomes. Circulating tumor cells (CTCs) are crucial in cancer metastasis and progression. Analyzing the differentially expressed genes (DEGs) between CTCs and CRC may provide us with new therapeutic strategies. Therefore, this study aims to analyze these DEGs to construct a prognostic risk model that predicts the outcomes of CRC patients and guides clinical treatment.
Methods: We analyzed The Cancer Genome Atlas (TCGA) database to identify 1,727 DEGs between CRC and normal samples, and GSE82198 data to find 3,564 DEGs between CTCs and primary CRC samples. Using enrichment analysis, least absolute shrinkage and selection operator (LASSO) regression, and stepwise Cox regression, we derived eight model genes to construct a prognostic risk model. Various algorithms were employed in the immune microenvironment analysis. Integrating clinical factors with risk grouping, we developed a nomogram. We assessed chemotherapy sensitivity and epithelial-mesenchymal transition (EMT) scores in high-/low-risk groups and explored model gene expression at the single-cell level.
Results: We constructed a prognostic risk model for CRC based on eight DEGs of CTCs. The model effectively predicted treatment outcomes and correlated closely with actual prognosis. Through immune microenvironment analysis, we revealed differences in immune cell infiltration and checkpoint gene expression among different risk groups. Moreover, patients in the high-risk group showed higher sensitivity to chemotherapy drugs compared to those in the low-risk group.
Conclusions: The prognosis model based on CTCs' DEGs can effectively predict patient outcomes, facilitating precision treatment for patients. This model holds significant guiding implications for immunotherapy and chemotherapy in CRC, offering potential strategies for the clinical treatment of CRC.
期刊介绍:
Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.