Modified partial least square structural equation model with multivariate adaptive regression spline: Parameter estimation technique and applications.

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-05-29 eCollection Date: 2025-06-01 DOI:10.1016/j.mex.2025.103381
Hendra H Dukalang, Bambang Widjanarko Otok, Purhadi
{"title":"Modified partial least square structural equation model with multivariate adaptive regression spline: Parameter estimation technique and applications.","authors":"Hendra H Dukalang, Bambang Widjanarko Otok, Purhadi","doi":"10.1016/j.mex.2025.103381","DOIUrl":null,"url":null,"abstract":"<p><p>Partial Least Squares Structural Equation Modelling (PLS-SEM) struggles with nonlinear relationships between latent variables, leading to biased results. To address this limitation, this study proposes a new model, Multivariate Adaptive Regression Splines Partial Least Square (MARSPLS), which is based on Multivariate Adaptive Regression Splines (MARS) using the PLS-SEM framework. The innovation lies in its ability to capture nonlinear and interaction effects between latent variables by leveraging the flexibility of MARS while retaining the latent structure estimation through PLS. The article elaborates the steps of Maximum Likelihood Estimator (MLE) and Ordinary Least Squares (OLS) to estimate values of MARSPLS parameters. The model is evaluated using both simulated and empirical data on e-wallet behavioural intention from 385 Indonesian respondents. Results show that MARSPLS with interaction achieves superior predictive accuracy, as indicated by higher R² value 54.08 % and lower AIC, AICc, and RMSE values. The primary characteristics of the recommended method involve the following:•A novel approach to PLS-SEM that assumes the relationship between latent is nonlinear or unknown.•The model involves four exogenous and one endogenous latent variable, without moderation and mediation effects.</p>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"103381"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mex.2025.103381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Partial Least Squares Structural Equation Modelling (PLS-SEM) struggles with nonlinear relationships between latent variables, leading to biased results. To address this limitation, this study proposes a new model, Multivariate Adaptive Regression Splines Partial Least Square (MARSPLS), which is based on Multivariate Adaptive Regression Splines (MARS) using the PLS-SEM framework. The innovation lies in its ability to capture nonlinear and interaction effects between latent variables by leveraging the flexibility of MARS while retaining the latent structure estimation through PLS. The article elaborates the steps of Maximum Likelihood Estimator (MLE) and Ordinary Least Squares (OLS) to estimate values of MARSPLS parameters. The model is evaluated using both simulated and empirical data on e-wallet behavioural intention from 385 Indonesian respondents. Results show that MARSPLS with interaction achieves superior predictive accuracy, as indicated by higher R² value 54.08 % and lower AIC, AICc, and RMSE values. The primary characteristics of the recommended method involve the following:•A novel approach to PLS-SEM that assumes the relationship between latent is nonlinear or unknown.•The model involves four exogenous and one endogenous latent variable, without moderation and mediation effects.

多变量自适应回归样条修正偏最小二乘结构方程模型:参数估计技术及应用。
偏最小二乘结构方程建模(PLS-SEM)与潜在变量之间的非线性关系作斗争,导致结果有偏。为了解决这一限制,本研究提出了一个新的模型,多元自适应回归样条偏最小二乘(MARSPLS),它基于多元自适应回归样条(MARS),使用PLS-SEM框架。其创新之处在于利用MARS的灵活性捕获潜在变量之间的非线性和相互作用效应,同时保留了PLS的潜在结构估计。本文详细阐述了最大似然估计(MLE)和普通最小二乘(OLS)估计MARSPLS参数值的步骤。该模型使用模拟和经验数据对385名印度尼西亚受访者的电子钱包行为意向进行评估。结果表明,具有交互作用的MARSPLS具有较高的R²值54.08%和较低的AIC、AICc和RMSE值,具有较好的预测精度。推荐的方法的主要特点包括:•一种新的PLS-SEM方法,假设潜函数之间的关系是非线性或未知的。•模型涉及4个外生潜变量和1个内生潜变量,不存在调节和中介作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信