Ya-Qi Mo, Jian-Yuan Zhong, Meng-Jun Teng, Jian-Chao Peng, Hai Huang, Michael Aschner, Yue-Ming Jiang
{"title":"Advances in Research on Neurotoxicity and Mechanisms of Manganese, Iron, and Copper Exposure, Alone or in Combination.","authors":"Ya-Qi Mo, Jian-Yuan Zhong, Meng-Jun Teng, Jian-Chao Peng, Hai Huang, Michael Aschner, Yue-Ming Jiang","doi":"10.1002/jat.4833","DOIUrl":null,"url":null,"abstract":"<p><p>Manganese (Mn), iron (Fe), and copper (Cu) are all essential trace elements for the human body; however, exposure to excessive amounts of these metals, either alone or in combination, can lead to neurotoxicity. Mn, Fe, and Cu can impair the nervous system through oxidative stress, apoptosis, and mitochondrial dysfunction. Mn disrupts dopamine neurogenesis through overexpression of α-synuclein (α-syn). Fe increases oxidative damage to lipids, proteins, and DNA through the Fenton reaction, leading to ferroptosis. Cu elevates nitrite oxide levels and inhibits the antioxidant system. Compared to exposure to individual metals, combined exposure to Mn and Fe results in less toxicity, suggesting an antagonistic effect. Combined exposure to Mn and Cu may exacerbate hepatocyte injury and mitochondrial dysfunction, leading to severe brain dysfunction. In Alzheimer's disease (AD), Fe and Cu contribute to the accelerated formation and accumulation of β-amyloid (Aβ) plaques, promote Fenton chemistry, and lead to the generation of reactive oxygen species (ROS) and localized neuroinflammation. However, the mechanistic basis of neurotoxicity arising from combined exposure to Mn, Fe, and Cu remains poorly understood, underscoring the need for further research to elucidate their synergistic effects and to inform prevention and therapeutic strategies for related neurodegenerative disorders.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4833","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Manganese (Mn), iron (Fe), and copper (Cu) are all essential trace elements for the human body; however, exposure to excessive amounts of these metals, either alone or in combination, can lead to neurotoxicity. Mn, Fe, and Cu can impair the nervous system through oxidative stress, apoptosis, and mitochondrial dysfunction. Mn disrupts dopamine neurogenesis through overexpression of α-synuclein (α-syn). Fe increases oxidative damage to lipids, proteins, and DNA through the Fenton reaction, leading to ferroptosis. Cu elevates nitrite oxide levels and inhibits the antioxidant system. Compared to exposure to individual metals, combined exposure to Mn and Fe results in less toxicity, suggesting an antagonistic effect. Combined exposure to Mn and Cu may exacerbate hepatocyte injury and mitochondrial dysfunction, leading to severe brain dysfunction. In Alzheimer's disease (AD), Fe and Cu contribute to the accelerated formation and accumulation of β-amyloid (Aβ) plaques, promote Fenton chemistry, and lead to the generation of reactive oxygen species (ROS) and localized neuroinflammation. However, the mechanistic basis of neurotoxicity arising from combined exposure to Mn, Fe, and Cu remains poorly understood, underscoring the need for further research to elucidate their synergistic effects and to inform prevention and therapeutic strategies for related neurodegenerative disorders.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.