PISAD: reference-free intraspecies sample anomalies detection tool based on k-mer counting.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Zhantian Xu, Fan Nie, Jianxin Wang
{"title":"PISAD: reference-free intraspecies sample anomalies detection tool based on k-mer counting.","authors":"Zhantian Xu, Fan Nie, Jianxin Wang","doi":"10.1093/gigascience/giaf061","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genomic sequencing research often requires the simultaneous analysis of heterogeneous data types across single or multiple individuals, introducing a substantial risk of sample swaps (e.g., labeling errors). Existing methods primarily rely on reference information, requiring the preselection of informative variant sites with a population allele frequency around 0.5, which may be insufficient or unavailable for nonmodel organisms. As research expands to encompass a growing number of new species, a robust quality control tool will become increasingly important.</p><p><strong>Finds: </strong>We developed PISAD (Phased Intraspecies Sample Anomalies Detection), a tool for validating sample identities in whole-genome sequencing (WGS) data without requiring reference information. It uses a 2-stage approach: first, it performs rapid, reference-free single nucleotide polymorphism (SNP) calling on low-error-rate data from the target individual to create a variant sketch; then, it assesses the concordance of other samples on this sketch to verify relationships. We assessed the performance and efficiency of PISAD on Homo sapiens, Bos taurus, Gallus gallus, Arctia plantaginis, and Pyrus species.</p><p><strong>Conclusions: </strong>Our evaluation showed that PISAD achieves a lower data coverage requirement (0.5×) compared to the reference-based tool ntsm and is broadly applicable to multiple diploid species.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Genomic sequencing research often requires the simultaneous analysis of heterogeneous data types across single or multiple individuals, introducing a substantial risk of sample swaps (e.g., labeling errors). Existing methods primarily rely on reference information, requiring the preselection of informative variant sites with a population allele frequency around 0.5, which may be insufficient or unavailable for nonmodel organisms. As research expands to encompass a growing number of new species, a robust quality control tool will become increasingly important.

Finds: We developed PISAD (Phased Intraspecies Sample Anomalies Detection), a tool for validating sample identities in whole-genome sequencing (WGS) data without requiring reference information. It uses a 2-stage approach: first, it performs rapid, reference-free single nucleotide polymorphism (SNP) calling on low-error-rate data from the target individual to create a variant sketch; then, it assesses the concordance of other samples on this sketch to verify relationships. We assessed the performance and efficiency of PISAD on Homo sapiens, Bos taurus, Gallus gallus, Arctia plantaginis, and Pyrus species.

Conclusions: Our evaluation showed that PISAD achieves a lower data coverage requirement (0.5×) compared to the reference-based tool ntsm and is broadly applicable to multiple diploid species.

PISAD:基于k-mer计数的无参考种内样本异常检测工具。
背景:基因组测序研究通常需要同时分析单个或多个个体的异质数据类型,这引入了大量的样本交换风险(例如,标记错误)。现有的方法主要依赖于参考信息,需要预先选择种群等位基因频率在0.5左右的信息性变异位点,这对于非模式生物来说可能不足或不可用。随着研究扩展到包括越来越多的新物种,一个强大的质量控制工具将变得越来越重要。发现:我们开发了PISAD(阶段性种内样本异常检测),这是一种无需参考信息即可验证全基因组测序(WGS)数据中样本身份的工具。它采用两阶段的方法:首先,它执行快速,无参考的单核苷酸多态性(SNP),调用来自目标个体的低错误率数据来创建变体草图;然后,评估该草图上其他样本的一致性以验证关系。我们评估了PISAD对智人、金牛、鸡、车前草和梨类的性能和效率。结论:我们的评估表明,与基于参考的工具ntsm相比,PISAD实现了较低的数据覆盖要求(0.5×),并且广泛适用于多个二倍体物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信