Topological data analysis approach to time series and shape analysis of dynamical system.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0268340
W Hussain Shah, S Rafia Fatima, G Huerta-Cuellar, J H García-López, C G Mata Ramirez, R Jaimes-Reátegui
{"title":"Topological data analysis approach to time series and shape analysis of dynamical system.","authors":"W Hussain Shah, S Rafia Fatima, G Huerta-Cuellar, J H García-López, C G Mata Ramirez, R Jaimes-Reátegui","doi":"10.1063/5.0268340","DOIUrl":null,"url":null,"abstract":"<p><p>In a dynamical system, the time series and phase space play vital roles, and we applied topological data analysis to these characteristics. More precisely, we consider the well-known Rössler-like attractor to analyze time-series and phase-space images. We studied persistent homology representations directly from the time series of the system to obtain point cloud data. In our approach, we converted the time series to a point cloud and computed homology using the Rips complex. This enabled us to measure the topological features of the system behavior. We also applied cubical homology to phase-space images for the first time, a novel contribution that represents an image-based approach to analyze phase portraits. This article provides a review of the topological data analysis of time series using examples with the Python function. Finally, we computed topological machine learning features, such as persistent landscapes, persistence images, and Betti curves. These features enable the automated analysis and classification of dynamical behaviors and, hence, connect topological data analysis with machine learning. This study is new in that it presents a comprehensive topological data analysis pipeline tailored to dynamical systems. The goal is to make these approaches accessible and usable for nonlinear dynamics to analyze their temporal series and phase portraits.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0268340","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In a dynamical system, the time series and phase space play vital roles, and we applied topological data analysis to these characteristics. More precisely, we consider the well-known Rössler-like attractor to analyze time-series and phase-space images. We studied persistent homology representations directly from the time series of the system to obtain point cloud data. In our approach, we converted the time series to a point cloud and computed homology using the Rips complex. This enabled us to measure the topological features of the system behavior. We also applied cubical homology to phase-space images for the first time, a novel contribution that represents an image-based approach to analyze phase portraits. This article provides a review of the topological data analysis of time series using examples with the Python function. Finally, we computed topological machine learning features, such as persistent landscapes, persistence images, and Betti curves. These features enable the automated analysis and classification of dynamical behaviors and, hence, connect topological data analysis with machine learning. This study is new in that it presents a comprehensive topological data analysis pipeline tailored to dynamical systems. The goal is to make these approaches accessible and usable for nonlinear dynamics to analyze their temporal series and phase portraits.

拓扑数据分析方法的时间序列和形状分析的动力系统。
在一个动态系统中,时间序列和相空间起着至关重要的作用,我们将拓扑数据分析应用于这些特征。更准确地说,我们考虑了众所周知的Rössler-like吸引子来分析时间序列和相空间图像。我们直接从系统的时间序列中研究了持久同调表示来获得点云数据。在我们的方法中,我们将时间序列转换为点云,并使用Rips复合体计算同源性。这使我们能够度量系统行为的拓扑特征。我们还首次将立方同源性应用于相空间图像,这是一种新颖的贡献,代表了一种基于图像的方法来分析相肖像。本文使用Python函数的示例回顾了时间序列的拓扑数据分析。最后,我们计算了拓扑机器学习特征,如持久景观、持久图像和贝蒂曲线。这些特性使动态行为的自动分析和分类成为可能,因此,将拓扑数据分析与机器学习联系起来。这项研究是新的,因为它提出了一个全面的拓扑数据分析管道量身定制的动力系统。目标是使这些方法可用于非线性动力学来分析它们的时间序列和相位肖像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信