On chaos with additional zero Lyapunov exponents and related effects. Overview and illustrations.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0273932
A P Kuznetsov, I R Sataev, N V Stankevich, L V Turukina
{"title":"On chaos with additional zero Lyapunov exponents and related effects. Overview and illustrations.","authors":"A P Kuznetsov, I R Sataev, N V Stankevich, L V Turukina","doi":"10.1063/5.0273932","DOIUrl":null,"url":null,"abstract":"<p><p>The problem of high-dimensional chaos with additional zero Lyapunov exponents is discussed. A review of both early and modern publications is presented. Specific examples of systems of different nature and model systems are considered. The review is supplemented with illustrations on the example of a discrete version of the Lorenz-84 system and a flow system consisting of subsystems with multi-frequency quasiperiodicity and chaos. Related effects such as quasi-periodic resonant tongues, quasi-periodic windows in chaos, and quasi-periodic shrimps are also discussed.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0273932","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of high-dimensional chaos with additional zero Lyapunov exponents is discussed. A review of both early and modern publications is presented. Specific examples of systems of different nature and model systems are considered. The review is supplemented with illustrations on the example of a discrete version of the Lorenz-84 system and a flow system consisting of subsystems with multi-frequency quasiperiodicity and chaos. Related effects such as quasi-periodic resonant tongues, quasi-periodic windows in chaos, and quasi-periodic shrimps are also discussed.

附加零李雅普诺夫指数的混沌及其相关效应。概述和插图。
讨论了具有附加零李雅普诺夫指数的高维混沌问题。对早期和现代出版物进行了回顾。考虑了不同性质的系统和模型系统的具体例子。文中还举例说明了一个离散版本的Lorenz-84系统和一个由多频准周期性和混沌子系统组成的流系统。讨论了准周期共振舌、混沌中的准周期窗口、准周期虾等相关效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信