{"title":"Glycogen synthase kinase 3β: a key player in progressive chronic kidney disease.","authors":"Mingzhuo Zhang, Marc Tatar, Rujun Gong","doi":"10.1042/CS20245219","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is a serious medical condition that poses substantial burdens on patients, families, healthcare systems, and society as a whole. It is characterized by progressive kidney damage and loss of function in the kidney, often compounded by underlying conditions such as diabetes, hypertension, and autoimmune diseases. Glycogen synthase kinase 3 beta (GSK3β), a highly conserved serine/threonine kinase originally implicated in insulin signaling, has emerged as a convergent point of multiple pathways implicated in the pathogenesis and progression of CKD. In the kidney, GSK3β regulates cell fate across diverse cells, including podocytes, mesangial cells, and renal tubular cells, through its interactions with key signaling pathways such as Wnt/β-catenin, NF-κB, Nrf2, PI3K/Akt, and cytoskeleton remodeling pathways. Evidence suggests that dysregulation of GSK3β is closely associated with pathological changes in the kidney, including podocyte injury, mesangial expansion, interstitial fibrosis, and tubular atrophy, which collectively drive chronic kidney destruction. In CKD, GSK3β is overexpressed and thus hyperactive in kidney cells. This sustained hyperactivity perpetuates oxidative stress and profibrotic signaling, particularly in renal tubular cells, thus accelerating the transition from acute kidney injury to CKD. Pharmacological targeting of GSK3β with selective inhibitors has shown promise in preclinical models, by reducing kidney injury, attenuating renal fibrosis, and promoting renal recovery, positioning GSK3β as a potential therapeutic target for CKD. This review highlights recent advances in understanding the molecular and cellular mechanisms through which GSK3β contributes to CKD and underscores its potential as a therapeutic target for various chronic renal diseases.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":"139 12","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20245219","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic kidney disease (CKD) is a serious medical condition that poses substantial burdens on patients, families, healthcare systems, and society as a whole. It is characterized by progressive kidney damage and loss of function in the kidney, often compounded by underlying conditions such as diabetes, hypertension, and autoimmune diseases. Glycogen synthase kinase 3 beta (GSK3β), a highly conserved serine/threonine kinase originally implicated in insulin signaling, has emerged as a convergent point of multiple pathways implicated in the pathogenesis and progression of CKD. In the kidney, GSK3β regulates cell fate across diverse cells, including podocytes, mesangial cells, and renal tubular cells, through its interactions with key signaling pathways such as Wnt/β-catenin, NF-κB, Nrf2, PI3K/Akt, and cytoskeleton remodeling pathways. Evidence suggests that dysregulation of GSK3β is closely associated with pathological changes in the kidney, including podocyte injury, mesangial expansion, interstitial fibrosis, and tubular atrophy, which collectively drive chronic kidney destruction. In CKD, GSK3β is overexpressed and thus hyperactive in kidney cells. This sustained hyperactivity perpetuates oxidative stress and profibrotic signaling, particularly in renal tubular cells, thus accelerating the transition from acute kidney injury to CKD. Pharmacological targeting of GSK3β with selective inhibitors has shown promise in preclinical models, by reducing kidney injury, attenuating renal fibrosis, and promoting renal recovery, positioning GSK3β as a potential therapeutic target for CKD. This review highlights recent advances in understanding the molecular and cellular mechanisms through which GSK3β contributes to CKD and underscores its potential as a therapeutic target for various chronic renal diseases.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.