PAD: Detail-Preserving Point Cloud Reconstruction and Generation via Autodecoders

IF 1.3 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yakai Zhang, Ping Yang, Haoran Wang, Zizhao Wu, Xiaoling Gu, Alexandru Telea, Kosinka Jiri
{"title":"PAD: Detail-Preserving Point Cloud Reconstruction and Generation via Autodecoders","authors":"Yakai Zhang,&nbsp;Ping Yang,&nbsp;Haoran Wang,&nbsp;Zizhao Wu,&nbsp;Xiaoling Gu,&nbsp;Alexandru Telea,&nbsp;Kosinka Jiri","doi":"10.1049/cvi2.70031","DOIUrl":null,"url":null,"abstract":"<p>High-accuracy point cloud (self-) reconstruction is crucial for point cloud editing, translation, and unsupervised representation learning. However, existing point cloud reconstruction methods often sacrifice many geometric details. Altough many techniques have proposed how to construct better point cloud decoders, only a few have designed point cloud encoders from a reconstruction perspective. We propose an autodecoder architecture to achieve detail-preserving point cloud reconstruction while bypassing the performance bottleneck of the encoder. Our architecture is theoretically applicable to any existing point cloud decoder. For training, both the weights of the decoder and the pre-initialised latent codes, corresponding to the input points, are updated simultaneously. Experimental results demonstrate that our autodecoder achieves an average reduction of 24.62% in Chamfer Distance compared to existing methods, significantly improving reconstruction quality on the ShapeNet dataset. Furthermore, we verify the effectiveness of our autodecoder in point cloud generation, upsampling, and unsupervised representation learning to demonstrate its performance on downstream tasks, which is comparable to the state-of-the-art methods. We will make our code publicly available after peer review.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

High-accuracy point cloud (self-) reconstruction is crucial for point cloud editing, translation, and unsupervised representation learning. However, existing point cloud reconstruction methods often sacrifice many geometric details. Altough many techniques have proposed how to construct better point cloud decoders, only a few have designed point cloud encoders from a reconstruction perspective. We propose an autodecoder architecture to achieve detail-preserving point cloud reconstruction while bypassing the performance bottleneck of the encoder. Our architecture is theoretically applicable to any existing point cloud decoder. For training, both the weights of the decoder and the pre-initialised latent codes, corresponding to the input points, are updated simultaneously. Experimental results demonstrate that our autodecoder achieves an average reduction of 24.62% in Chamfer Distance compared to existing methods, significantly improving reconstruction quality on the ShapeNet dataset. Furthermore, we verify the effectiveness of our autodecoder in point cloud generation, upsampling, and unsupervised representation learning to demonstrate its performance on downstream tasks, which is comparable to the state-of-the-art methods. We will make our code publicly available after peer review.

Abstract Image

PAD:保留细节的点云重建和生成通过自动解码器
高精度的点云(自)重建对于点云编辑、翻译和无监督表示学习至关重要。然而,现有的点云重建方法往往牺牲了许多几何细节。虽然已有许多技术提出如何构建更好的点云解码器,但从重构的角度设计点云编码器的技术很少。我们提出了一种自动解码器架构,以实现保留细节的点云重建,同时绕过编码器的性能瓶颈。我们的架构理论上适用于任何现有的点云解码器。对于训练,同时更新译码器的权值和与输入点对应的预初始化潜在码的权值。实验结果表明,与现有方法相比,我们的自解码器平均减少了24.62%的倒角距离,显著提高了ShapeNet数据集的重建质量。此外,我们验证了我们的自动解码器在点云生成、上采样和无监督表示学习方面的有效性,以展示其在下游任务上的性能,这与最先进的方法相当。我们将在同行评审后公开我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信