{"title":"PAD: Detail-Preserving Point Cloud Reconstruction and Generation via Autodecoders","authors":"Yakai Zhang, Ping Yang, Haoran Wang, Zizhao Wu, Xiaoling Gu, Alexandru Telea, Kosinka Jiri","doi":"10.1049/cvi2.70031","DOIUrl":null,"url":null,"abstract":"<p>High-accuracy point cloud (self-) reconstruction is crucial for point cloud editing, translation, and unsupervised representation learning. However, existing point cloud reconstruction methods often sacrifice many geometric details. Altough many techniques have proposed how to construct better point cloud decoders, only a few have designed point cloud encoders from a reconstruction perspective. We propose an autodecoder architecture to achieve detail-preserving point cloud reconstruction while bypassing the performance bottleneck of the encoder. Our architecture is theoretically applicable to any existing point cloud decoder. For training, both the weights of the decoder and the pre-initialised latent codes, corresponding to the input points, are updated simultaneously. Experimental results demonstrate that our autodecoder achieves an average reduction of 24.62% in Chamfer Distance compared to existing methods, significantly improving reconstruction quality on the ShapeNet dataset. Furthermore, we verify the effectiveness of our autodecoder in point cloud generation, upsampling, and unsupervised representation learning to demonstrate its performance on downstream tasks, which is comparable to the state-of-the-art methods. We will make our code publicly available after peer review.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
High-accuracy point cloud (self-) reconstruction is crucial for point cloud editing, translation, and unsupervised representation learning. However, existing point cloud reconstruction methods often sacrifice many geometric details. Altough many techniques have proposed how to construct better point cloud decoders, only a few have designed point cloud encoders from a reconstruction perspective. We propose an autodecoder architecture to achieve detail-preserving point cloud reconstruction while bypassing the performance bottleneck of the encoder. Our architecture is theoretically applicable to any existing point cloud decoder. For training, both the weights of the decoder and the pre-initialised latent codes, corresponding to the input points, are updated simultaneously. Experimental results demonstrate that our autodecoder achieves an average reduction of 24.62% in Chamfer Distance compared to existing methods, significantly improving reconstruction quality on the ShapeNet dataset. Furthermore, we verify the effectiveness of our autodecoder in point cloud generation, upsampling, and unsupervised representation learning to demonstrate its performance on downstream tasks, which is comparable to the state-of-the-art methods. We will make our code publicly available after peer review.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf