A Low-Resolution Video Action Recognition Approach Based on Multi-Scale Reconstruction and Multi-Modal Fusion

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hui Zheng;Yesheng Zhao;Bo Zhang;Guoqiang Shang;Mohammad H. Yahya Al-Shamri;Haya Aldossary
{"title":"A Low-Resolution Video Action Recognition Approach Based on Multi-Scale Reconstruction and Multi-Modal Fusion","authors":"Hui Zheng;Yesheng Zhao;Bo Zhang;Guoqiang Shang;Mohammad H. Yahya Al-Shamri;Haya Aldossary","doi":"10.1109/TCE.2024.3521512","DOIUrl":null,"url":null,"abstract":"The challenge of low-resolution video action recognition task lies in recovering and extracting feature representations that can effectively capture action characteristics with limited semantic information. In this paper, we propose an approach to address this challenge, which primarily comprises a multi-scale reconstruction module and a multi-modal fusion module. In multi-scale reconstruction module, we introduce a frequency-adaptive reconstruction model to reconstruct lost information from multiple scales. For crucial high-frequency sub-band images, we propose a wavelet-based super-resolution generative adversarial network to recover detailed information. In multi-modal fusion module, we propose a two-stream Transformer-based network to mine spatial-temporal joint feature representations from the reconstructed video. Additionally, we utilize another Transformer model to fuse features from different modalities, capturing both consistent and complementary representations. Finally, the fused features are fed into a classifier for recognition. Experimental results show that our proposed model outperforms other models for low-quality action recognition on HMDB51 (<inline-formula> <tex-math>$16\\times 12~58.70$ </tex-math></inline-formula>%, <inline-formula> <tex-math>$14\\times 14~62.25$ </tex-math></inline-formula>%, <inline-formula> <tex-math>$80\\times 60~68.94$ </tex-math></inline-formula>%), UCF101 (<inline-formula> <tex-math>$14\\times 14~76.74$ </tex-math></inline-formula>%, <inline-formula> <tex-math>$28\\times 28~84.15$ </tex-math></inline-formula>%, <inline-formula> <tex-math>$80\\times 60~92.78$ </tex-math></inline-formula>%), and Tiny-VIRAT (35.63%) datasets.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 1","pages":"970-983"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812810/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of low-resolution video action recognition task lies in recovering and extracting feature representations that can effectively capture action characteristics with limited semantic information. In this paper, we propose an approach to address this challenge, which primarily comprises a multi-scale reconstruction module and a multi-modal fusion module. In multi-scale reconstruction module, we introduce a frequency-adaptive reconstruction model to reconstruct lost information from multiple scales. For crucial high-frequency sub-band images, we propose a wavelet-based super-resolution generative adversarial network to recover detailed information. In multi-modal fusion module, we propose a two-stream Transformer-based network to mine spatial-temporal joint feature representations from the reconstructed video. Additionally, we utilize another Transformer model to fuse features from different modalities, capturing both consistent and complementary representations. Finally, the fused features are fed into a classifier for recognition. Experimental results show that our proposed model outperforms other models for low-quality action recognition on HMDB51 ( $16\times 12~58.70$ %, $14\times 14~62.25$ %, $80\times 60~68.94$ %), UCF101 ( $14\times 14~76.74$ %, $28\times 28~84.15$ %, $80\times 60~92.78$ %), and Tiny-VIRAT (35.63%) datasets.
基于多尺度重构和多模态融合的低分辨率视频动作识别方法
低分辨率视频动作识别任务的挑战在于恢复和提取特征表示,以有效捕获语义信息有限的动作特征。在本文中,我们提出了一种解决这一挑战的方法,该方法主要包括多尺度重建模块和多模态融合模块。在多尺度重构模块中,我们引入了一种频率自适应重构模型,对多尺度的丢失信息进行重构。对于关键的高频子带图像,我们提出了一种基于小波的超分辨率生成对抗网络来恢复详细信息。在多模态融合模块中,我们提出了一种基于两流变压器的网络,从重构视频中挖掘时空联合特征表示。此外,我们利用另一个Transformer模型来融合来自不同模态的特征,捕获一致的和互补的表示。最后,将融合后的特征输入分类器进行识别。实验结果表明,本文提出的模型在HMDB51 ($16\times 12~58.70$ %, $14\times 14~62.25$ %, $80\times 60~68.94$ %)、UCF101 ($14\times 14~76.74$ %, $28\times 28~84.15$ %, $80\times 60~92.78$ %)和Tiny-VIRAT(35.63%)数据集上的低质量动作识别优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信