Q-Gen: A Parameterized Quantum Circuit Generator

IF 4.6
Yikai Mao;Shaswot Shresthamali;Masaaki Kondo
{"title":"Q-Gen: A Parameterized Quantum Circuit Generator","authors":"Yikai Mao;Shaswot Shresthamali;Masaaki Kondo","doi":"10.1109/TQE.2025.3572142","DOIUrl":null,"url":null,"abstract":"Unlike most classical algorithms that take an input and give the solution directly as an output, quantum algorithms produce a quantum circuit that works as an indirect solution to computationally hard problems. In the full quantum computing workflow, most data processing remains in the classical domain except for running the quantum circuit in the quantum processor. This leaves massive opportunities for classical automation and optimization toward future utilization of quantum computing. We kick-start the first step in this direction by introducing Q-gen, a high-level parameterized quantum circuit generator incorporating 15 realistic quantum algorithms. Each customized generation function comes with algorithm-specific parameters beyond the number of qubits, providing a large generation volume with high circuit variability. To demonstrate the functionality of Q-gen, we organize the algorithms into five hierarchical systems and generate a quantum circuit dataset accompanied by their measurement histograms and state vectors. This dataset enables researchers to statistically analyze the structure, complexity, and performance of large-scale quantum circuits or quickly train novel machine learning models without worrying about the exponentially growing simulation time. Q-gen is an open-source and multipurpose project that serves as the entrance for users with a classical computer science background to dive into the world of quantum computing.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-16"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11008486","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11008486/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike most classical algorithms that take an input and give the solution directly as an output, quantum algorithms produce a quantum circuit that works as an indirect solution to computationally hard problems. In the full quantum computing workflow, most data processing remains in the classical domain except for running the quantum circuit in the quantum processor. This leaves massive opportunities for classical automation and optimization toward future utilization of quantum computing. We kick-start the first step in this direction by introducing Q-gen, a high-level parameterized quantum circuit generator incorporating 15 realistic quantum algorithms. Each customized generation function comes with algorithm-specific parameters beyond the number of qubits, providing a large generation volume with high circuit variability. To demonstrate the functionality of Q-gen, we organize the algorithms into five hierarchical systems and generate a quantum circuit dataset accompanied by their measurement histograms and state vectors. This dataset enables researchers to statistically analyze the structure, complexity, and performance of large-scale quantum circuits or quickly train novel machine learning models without worrying about the exponentially growing simulation time. Q-gen is an open-source and multipurpose project that serves as the entrance for users with a classical computer science background to dive into the world of quantum computing.
Q-Gen:一种参数化量子电路发生器
与大多数经典算法不同的是,量子算法产生一个量子电路,作为计算难题的间接解决方案。在全量子计算工作流程中,除了在量子处理器中运行量子电路外,大多数数据处理仍停留在经典领域。这为经典自动化和优化未来利用量子计算留下了巨大的机会。我们通过引入Q-gen,一种包含15种现实量子算法的高级参数化量子电路发生器,开始了这个方向的第一步。每个定制的生成函数都带有超出量子比特数量的算法特定参数,提供具有高电路可变性的大生成量。为了展示Q-gen的功能,我们将算法组织成五个层次系统,并生成一个量子电路数据集,并附带它们的测量直方图和状态向量。该数据集使研究人员能够统计分析大规模量子电路的结构,复杂性和性能,或快速训练新的机器学习模型,而无需担心指数增长的模拟时间。Q-gen是一个开源的多用途项目,是具有经典计算机科学背景的用户进入量子计算世界的入口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信