Attention-Based Convolutional Neural Network for Anomaly Detection in Multispectral Images of Semi-Natural Ecosystems

Javier López-Fandiño;Álvaro Ordóñez;Pablo Quesada-Barriuso;Alberto S. Garea;Francisco Argüello;Dora B. Heras
{"title":"Attention-Based Convolutional Neural Network for Anomaly Detection in Multispectral Images of Semi-Natural Ecosystems","authors":"Javier López-Fandiño;Álvaro Ordóñez;Pablo Quesada-Barriuso;Alberto S. Garea;Francisco Argüello;Dora B. Heras","doi":"10.1109/LGRS.2025.3577943","DOIUrl":null,"url":null,"abstract":"The monitoring of semi-natural ecosystems has become increasingly critical due to the rising impact of ecological disturbances, including natural disasters and unauthorized human-made constructions. Anomaly detection (AD) in multispectral imagery serves as a fundamental tool in this context. Deep-learning (DL)-based techniques are particularly effective at capturing the intricate spectral and spatial patterns of anomalies. This letter proposes a new AD technique called attention-based convolutional neural network (ACNN), designed to enhance AD performance in multispectral images of high spatial resolution for the detection of human-made constructions. The model integrates attention mechanisms to prioritize informative features while suppressing irrelevant background information, thereby improving sensitivity to subtle and rare anomalies. Experimental results on multispectral datasets from semi-natural ecosystems show that the proposed approach outperforms existing DL techniques in terms of detection accuracy. These findings highlight the potential of attention-based models as a robust framework for environmental monitoring and AD in complex remote sensing scenarios.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028595","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11028595/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The monitoring of semi-natural ecosystems has become increasingly critical due to the rising impact of ecological disturbances, including natural disasters and unauthorized human-made constructions. Anomaly detection (AD) in multispectral imagery serves as a fundamental tool in this context. Deep-learning (DL)-based techniques are particularly effective at capturing the intricate spectral and spatial patterns of anomalies. This letter proposes a new AD technique called attention-based convolutional neural network (ACNN), designed to enhance AD performance in multispectral images of high spatial resolution for the detection of human-made constructions. The model integrates attention mechanisms to prioritize informative features while suppressing irrelevant background information, thereby improving sensitivity to subtle and rare anomalies. Experimental results on multispectral datasets from semi-natural ecosystems show that the proposed approach outperforms existing DL techniques in terms of detection accuracy. These findings highlight the potential of attention-based models as a robust framework for environmental monitoring and AD in complex remote sensing scenarios.
基于注意力的卷积神经网络半自然生态系统多光谱图像异常检测
由于自然灾害和未经批准的人为建设等生态干扰的影响日益严重,对半自然生态系统的监测变得越来越重要。在这种情况下,多光谱图像中的异常检测(AD)是一种基本工具。基于深度学习(DL)的技术在捕获异常复杂的光谱和空间模式方面特别有效。这封信提出了一种新的AD技术,称为基于注意力的卷积神经网络(ACNN),旨在提高AD在高空间分辨率的多光谱图像中的性能,用于检测人造结构。该模型集成了注意机制,优先考虑信息特征,同时抑制无关背景信息,从而提高了对细微和罕见异常的敏感性。在半自然生态系统多光谱数据集上的实验结果表明,该方法在检测精度方面优于现有的深度学习技术。这些发现突出了基于注意力的模型作为复杂遥感情景下环境监测和AD的强大框架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信