Wenxing Yang , Jilu Jin , Kaili Yin , Jingdong Chen , Jacob Benesty
{"title":"On adaptive multichannel dereverberation based on dichotomous coordinate descent and data-reuse techniques","authors":"Wenxing Yang , Jilu Jin , Kaili Yin , Jingdong Chen , Jacob Benesty","doi":"10.1016/j.sigpro.2025.110138","DOIUrl":null,"url":null,"abstract":"<div><div>Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update the linear prediction coefficients. However, these algorithms tend to be computationally intensive, making it necessary in practical implementations to reduce complexity while improving numerical robustness for better dereverberation performance. In this paper, we introduce a more efficient MCLP-based adaptive dereverberation method that combines dichotomous coordinate descent (DCD) with a data-reuse (DR) technique. Compared to the traditional RLS-based approach, the proposed method offers two major benefits. First, it significantly lowers computational demands by replacing most multiplications with bitshifts during DCD iterations, making it more suitable for real-world applications. Second, by avoiding the propagation of the inverse covariance matrix via the Riccati equation, the method ensures numerical stability, making it more suitable for processing long-duration speech signals. Additionally, the DR technique improves dereverberation performance by more efficiently utilizing available observed data. Simulation results show that the proposed methods outperform the conventional RLS-based approach in terms of both numerical stability and computational efficiency, while delivering comparable dereverberation performance.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110138"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016516842500252X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update the linear prediction coefficients. However, these algorithms tend to be computationally intensive, making it necessary in practical implementations to reduce complexity while improving numerical robustness for better dereverberation performance. In this paper, we introduce a more efficient MCLP-based adaptive dereverberation method that combines dichotomous coordinate descent (DCD) with a data-reuse (DR) technique. Compared to the traditional RLS-based approach, the proposed method offers two major benefits. First, it significantly lowers computational demands by replacing most multiplications with bitshifts during DCD iterations, making it more suitable for real-world applications. Second, by avoiding the propagation of the inverse covariance matrix via the Riccati equation, the method ensures numerical stability, making it more suitable for processing long-duration speech signals. Additionally, the DR technique improves dereverberation performance by more efficiently utilizing available observed data. Simulation results show that the proposed methods outperform the conventional RLS-based approach in terms of both numerical stability and computational efficiency, while delivering comparable dereverberation performance.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.