{"title":"Experimental investigation of liquid density for n-pentane + n-decane mixtures at temperatures from 283 K to 363 K and pressures up to 100 MPa","authors":"Tao Jia , Jinpeng Yang , Jia Yu","doi":"10.1016/j.fluid.2025.114501","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge of the accurate <em>pρTx</em> behavior of hydrocarbon mixtures at different temperatures and pressures is indispensable for simulating reservoir behavior, optimizing recovery processes, and predicting the thermodynamic properties. The compressed liquid densities of <em>n</em>-pentane(1) + <em>n</em>-decane(2) binary mixtures with mole fraction <em>x</em><sub>1</sub> = 0.1024, 0.2978, 0.5145, 0.7036, and 0.9113 were measured using a vibrating tube densimeter at temperatures from 283 K to 363 K, and pressures up to 100 MPa. The relative uncertainty for density measurement of <em>n</em>-pentane + <em>n</em>-decane binary mixtures of 0.99 mol fraction purity is 0.1 %. The densities of binary mixtures were correlated with the modified Tait equation, and the absolute average deviations of the experimental and calculated values were 0.005 %, 0.005 %, 0.006 %, 0.008 %, and 0.009 %, respectively. In addition, the isothermal compressibility, the isobaric thermal expansivity, and excess molar volume were calculated from experimental densities.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"598 ","pages":"Article 114501"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225001712","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge of the accurate pρTx behavior of hydrocarbon mixtures at different temperatures and pressures is indispensable for simulating reservoir behavior, optimizing recovery processes, and predicting the thermodynamic properties. The compressed liquid densities of n-pentane(1) + n-decane(2) binary mixtures with mole fraction x1 = 0.1024, 0.2978, 0.5145, 0.7036, and 0.9113 were measured using a vibrating tube densimeter at temperatures from 283 K to 363 K, and pressures up to 100 MPa. The relative uncertainty for density measurement of n-pentane + n-decane binary mixtures of 0.99 mol fraction purity is 0.1 %. The densities of binary mixtures were correlated with the modified Tait equation, and the absolute average deviations of the experimental and calculated values were 0.005 %, 0.005 %, 0.006 %, 0.008 %, and 0.009 %, respectively. In addition, the isothermal compressibility, the isobaric thermal expansivity, and excess molar volume were calculated from experimental densities.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.