Rank-dependent set-based association measures

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Radko Mesiar , Anna Kolesárová , Ayyub Sheikhi , Fateme Kouchakinejad
{"title":"Rank-dependent set-based association measures","authors":"Radko Mesiar ,&nbsp;Anna Kolesárová ,&nbsp;Ayyub Sheikhi ,&nbsp;Fateme Kouchakinejad","doi":"10.1016/j.fss.2025.109505","DOIUrl":null,"url":null,"abstract":"<div><div>Association measures capturing rank-dependent stochastic dependence of two random variables are considered. These measures can be seen as special functions on the class of all 2-dimensional copulas. The major part of this work is devoted to the introduction and study of linear rank-dependent association measures <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> based on finite sets <span><math><mi>G</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span> of points from the open unit square <span><math><mo>]</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>[</mo><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Among several examples, we also present discrete approximations of Spearman's <em>ρ</em> and Spearman's footrule <em>ϕ</em>. To capture possibly different importances of points <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>G</mi></math></span>, we propose to equip the sets <em>G</em> with a probability <em>P</em>, and consider the <em>P</em>-sets <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>}</mo></math></span>. Then we study the related association measures <span><math><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>P</mi></mrow></msub></mrow></msub></math></span>. Finally, rank-dependent association measures based on probabilities or special <em>σ</em>-additive measures, not necessarily bounded, are considered.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"518 ","pages":"Article 109505"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425002441","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Association measures capturing rank-dependent stochastic dependence of two random variables are considered. These measures can be seen as special functions on the class of all 2-dimensional copulas. The major part of this work is devoted to the introduction and study of linear rank-dependent association measures LG based on finite sets G={(x1,y1),,(xk,yk)} of points from the open unit square ]0,1[2. Among several examples, we also present discrete approximations of Spearman's ρ and Spearman's footrule ϕ. To capture possibly different importances of points (xi,yi)G, we propose to equip the sets G with a probability P, and consider the P-sets GP={(x1,y1,p1),,(xk,yk,pk)}. Then we study the related association measures LGP. Finally, rank-dependent association measures based on probabilities or special σ-additive measures, not necessarily bounded, are considered.
基于秩相关集的关联度量
考虑了捕获两个随机变量的秩相关随机依赖的关联度量。这些测度可以看作是所有二维联结类上的特殊函数。本工作的主要部分是介绍和研究基于开放单位正方形[0,1[2]的点的有限集G={(x1,y1),…,(xk,yk)}的线性秩相关关联测度LG。在几个例子中,我们还提出了斯皮尔曼ρ和斯皮尔曼微分φ的离散近似。为了捕捉点(xi,yi)∈G的可能不同的重要性,我们建议为集合G配备一个概率P,并考虑P集GP={(x1,y1,p1),…,(xk,yk,pk)}。然后研究了相关的关联测度LGP。最后,考虑了基于概率的秩相关关联测度或特殊的σ-加性测度(不一定有界)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信