Kun Chen , Meng Li , Xiaolian Li , Guangzhi Cui , Jia Tian , JiaLe Li , RuoYao Mu , JunJie Zhu
{"title":"Enhancing microseismic event detection with TransUNet: A deep learning approach for simultaneous pickings of P-wave and S-wave first arrivals","authors":"Kun Chen , Meng Li , Xiaolian Li , Guangzhi Cui , Jia Tian , JiaLe Li , RuoYao Mu , JunJie Zhu","doi":"10.1016/j.aiig.2025.100129","DOIUrl":null,"url":null,"abstract":"<div><div>Microseismic monitoring is essential for understanding subsurface dynamics and optimizing oil and gas production. However, traditional methods for the automatic detection of microseismic events rely heavily on characteristic functions and human intervention, often resulting in suboptimal performance when dealing with complex and noisy data. In this study, we propose a novel approach that leverages deep learning frame to extract multiscale features from microseismic data using a TransUNet neural network. Our model integrates the advantages of Transformer and UNet architectures to achieve high accuracy in multivariate image segmentation and precise picking of P-wave and S-wave first arrivals simultaneously. We validate our approach using both synthetic and field microseismic datasets recorded from gas storage monitoring and roof fracturing in a coal seam. The robustness of the proposed method has been verified in the testing of synthetic data with various levels of Gaussian and real background noises extracted from field data. The comparisons of the proposed method with UNet and SwinUNet in terms of the model architecture and classification performance demonstrate the TransUNet achieves the optimal balance in its architecture and inference speed. With relatively low inference time and network complexity, it operates effectively in high-precision microseismic phase pickings. This advancement holds significant promise for enhancing microseismic monitoring technology in hydraulic fracturing and reservoir monitoring applications.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100129"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microseismic monitoring is essential for understanding subsurface dynamics and optimizing oil and gas production. However, traditional methods for the automatic detection of microseismic events rely heavily on characteristic functions and human intervention, often resulting in suboptimal performance when dealing with complex and noisy data. In this study, we propose a novel approach that leverages deep learning frame to extract multiscale features from microseismic data using a TransUNet neural network. Our model integrates the advantages of Transformer and UNet architectures to achieve high accuracy in multivariate image segmentation and precise picking of P-wave and S-wave first arrivals simultaneously. We validate our approach using both synthetic and field microseismic datasets recorded from gas storage monitoring and roof fracturing in a coal seam. The robustness of the proposed method has been verified in the testing of synthetic data with various levels of Gaussian and real background noises extracted from field data. The comparisons of the proposed method with UNet and SwinUNet in terms of the model architecture and classification performance demonstrate the TransUNet achieves the optimal balance in its architecture and inference speed. With relatively low inference time and network complexity, it operates effectively in high-precision microseismic phase pickings. This advancement holds significant promise for enhancing microseismic monitoring technology in hydraulic fracturing and reservoir monitoring applications.