Recognition of rice seedling counts in UAV remote sensing images via the YOLO algorithm

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Shengxi Chen , Wenli Li , Du Chen , Zhao Xie , Song Zhang , Fulang Cen , Xiaoyun Huang , Lei Tu , Zhenran Gao
{"title":"Recognition of rice seedling counts in UAV remote sensing images via the YOLO algorithm","authors":"Shengxi Chen ,&nbsp;Wenli Li ,&nbsp;Du Chen ,&nbsp;Zhao Xie ,&nbsp;Song Zhang ,&nbsp;Fulang Cen ,&nbsp;Xiaoyun Huang ,&nbsp;Lei Tu ,&nbsp;Zhenran Gao","doi":"10.1016/j.atech.2025.101107","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are inefficient and prone to error. The integration of high-resolution drone imagery with the feature extraction capabilities of deep learning offers a novel approach for identifying rice seedlings using advanced computational techniques. This study employed drone-captured images of rice seedlings taken at heights of 12 m and 15 m from two locations—Anshun City and Qianxinan Prefecture in Guizhou Province—to construct datasets containing 100, 150, and 200 images, and compared the performance of YOLOv8n, YOLOv9t, and YOLOv10n in recognizing rice seedling numbers. The results show that at a flight height of 12 m and using a dataset of 200 images, model performance was optimal, achieving mAP@50 values of 0.964, 0.936, and 0.944 for YOLOv8n, YOLOv9t, and YOLOv10n, respectively. Among these, YOLOv8n demonstrated the highest prediction accuracy for rice seedlings, with an R<sup>2</sup> value of 0.889, RMSE of 3.225, and rRMSE of 0.032. This research demonstrates that the combination of drone imagery and deep learning models enables effective large-scale counting of rice seedlings, presenting an innovative approach to rice phenotypic analysis.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101107"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are inefficient and prone to error. The integration of high-resolution drone imagery with the feature extraction capabilities of deep learning offers a novel approach for identifying rice seedlings using advanced computational techniques. This study employed drone-captured images of rice seedlings taken at heights of 12 m and 15 m from two locations—Anshun City and Qianxinan Prefecture in Guizhou Province—to construct datasets containing 100, 150, and 200 images, and compared the performance of YOLOv8n, YOLOv9t, and YOLOv10n in recognizing rice seedling numbers. The results show that at a flight height of 12 m and using a dataset of 200 images, model performance was optimal, achieving mAP@50 values of 0.964, 0.936, and 0.944 for YOLOv8n, YOLOv9t, and YOLOv10n, respectively. Among these, YOLOv8n demonstrated the highest prediction accuracy for rice seedlings, with an R2 value of 0.889, RMSE of 3.225, and rRMSE of 0.032. This research demonstrates that the combination of drone imagery and deep learning models enables effective large-scale counting of rice seedlings, presenting an innovative approach to rice phenotypic analysis.
基于YOLO算法的无人机遥感影像水稻苗数识别
水稻苗数的准确鉴定对水稻育种、再植和产量预测具有重要意义。传统的人工计数方法效率低下且容易出错。将高分辨率无人机图像与深度学习的特征提取能力相结合,为使用先进的计算技术识别水稻幼苗提供了一种新的方法。本研究利用无人机在贵州省安顺市和黔西南州的12 m和15 m高度拍摄的水稻幼苗图像,构建了包含100、150和200幅图像的数据集,并比较了YOLOv8n、YOLOv9t和YOLOv10n识别水稻幼苗数量的性能。结果表明,在飞行高度为12 m,使用200张图像的数据集时,模型性能最优,YOLOv8n、YOLOv9t和YOLOv10n的mAP@50值分别为0.964、0.936和0.944。其中,YOLOv8n对水稻幼苗的预测精度最高,R2值为0.889,RMSE为3.225,rRMSE为0.032。该研究表明,无人机图像和深度学习模型的结合可以有效地大规模计数水稻幼苗,为水稻表型分析提供了一种创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信