{"title":"Robust broad learning system with parametrized variational mode decomposition for schizophrenia diagnosis","authors":"Sebamai Parija , Mrutyunjaya Sahani , Susanta Kumar Rout","doi":"10.1016/j.engappai.2025.111294","DOIUrl":null,"url":null,"abstract":"<div><div>Schizophrenia (SZ) is a significant mental disorder characterized by various neurophysiological and cognitive impairments. Early diagnosis remains challenging due to its reliance on symptom detection. However, advance signal processing algorithm is combined with machine learning technique for early detection of schizophrenia using electroencephalogram (EEG) signals efficaciously. To optimize results from biomedical signals, effective feature extraction (FE) and feature engineering are essential. In this study, parametrized variational mode decomposition (PVMD) is applied to electroencephalogram (EEG) signals to extract band-limited intrinsic mode functions (BLIMFs), which are selected using fuzzy dispersion entropy (FDE). The extracted BLIMFs are fed into deep stack autoencoder (DSAE) with a minimum reconstruction error, utilizing root mean square (RMS) as the cost function. We also demonstrate how to apply the robust broad learning system (RBLS) to classify neuro-disorders, comparing it with various broad learning system (BLS) methods for schizophrenia classification. Building on RBLS’s success, we propose a novel VMD-based BLS (VMD-BLS) technique. To address VMD-BLS’s limitations, we introduce a PVMD-DSAE based RBLS (PVMD-DSAE-RBLS). The effectiveness of PVMD-DSAE-RBLS is tested on three datasets, with results showing accuracies of 99.98%, 96.91% and 99.29% for the Poland, Kaggle, and Moscow datasets, respectively. The performance of the proposed PVMD-DSAE-RBLS method significantly outperforms compared to similar learning algorithms and state-of-the-art techniques. Finally, a reconfigurable high-speed field-programmable gate array (FPGA) embedded processor is implemented to design a computer-aided diagnosis (CAD) system, providing efficient automated diagnosis for schizophrenia patients.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"158 ","pages":"Article 111294"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625012965","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Schizophrenia (SZ) is a significant mental disorder characterized by various neurophysiological and cognitive impairments. Early diagnosis remains challenging due to its reliance on symptom detection. However, advance signal processing algorithm is combined with machine learning technique for early detection of schizophrenia using electroencephalogram (EEG) signals efficaciously. To optimize results from biomedical signals, effective feature extraction (FE) and feature engineering are essential. In this study, parametrized variational mode decomposition (PVMD) is applied to electroencephalogram (EEG) signals to extract band-limited intrinsic mode functions (BLIMFs), which are selected using fuzzy dispersion entropy (FDE). The extracted BLIMFs are fed into deep stack autoencoder (DSAE) with a minimum reconstruction error, utilizing root mean square (RMS) as the cost function. We also demonstrate how to apply the robust broad learning system (RBLS) to classify neuro-disorders, comparing it with various broad learning system (BLS) methods for schizophrenia classification. Building on RBLS’s success, we propose a novel VMD-based BLS (VMD-BLS) technique. To address VMD-BLS’s limitations, we introduce a PVMD-DSAE based RBLS (PVMD-DSAE-RBLS). The effectiveness of PVMD-DSAE-RBLS is tested on three datasets, with results showing accuracies of 99.98%, 96.91% and 99.29% for the Poland, Kaggle, and Moscow datasets, respectively. The performance of the proposed PVMD-DSAE-RBLS method significantly outperforms compared to similar learning algorithms and state-of-the-art techniques. Finally, a reconfigurable high-speed field-programmable gate array (FPGA) embedded processor is implemented to design a computer-aided diagnosis (CAD) system, providing efficient automated diagnosis for schizophrenia patients.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.