Low-rank tensor recovery via jointing the non-convex regularization and deep prior

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qing Liu, Huanmin Ge, Xinhua Su
{"title":"Low-rank tensor recovery via jointing the non-convex regularization and deep prior","authors":"Qing Liu,&nbsp;Huanmin Ge,&nbsp;Xinhua Su","doi":"10.1016/j.neucom.2025.130610","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA), which have broad applications in the recovery of real-world multi-dimensional data. To enhance recovery performance, we propose novel non-convex tensor recovery models for both LRTC and TRPCA by combining low-rank priors with data-driven deep priors. Specifically, we use the tensor <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> pseudo-norm to effectively capture the low-rank structure of the tensor, providing a more accurate approximation of its rank. In addition, a convolutional neural network (CNN) denoiser is incorporated to learn deep prior information, further improving recovery accuracy. We also develop efficient iterative algorithms for solving the proposed models based on the alternating direction method of multipliers (ADMM). Experimental results show that the proposed methods outperform state-of-the-art techniques in terms of recovery accuracy for both LRTC and TRPCA.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"648 ","pages":"Article 130610"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225012822","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA), which have broad applications in the recovery of real-world multi-dimensional data. To enhance recovery performance, we propose novel non-convex tensor recovery models for both LRTC and TRPCA by combining low-rank priors with data-driven deep priors. Specifically, we use the tensor rp pseudo-norm to effectively capture the low-rank structure of the tensor, providing a more accurate approximation of its rank. In addition, a convolutional neural network (CNN) denoiser is incorporated to learn deep prior information, further improving recovery accuracy. We also develop efficient iterative algorithms for solving the proposed models based on the alternating direction method of multipliers (ADMM). Experimental results show that the proposed methods outperform state-of-the-art techniques in terms of recovery accuracy for both LRTC and TRPCA.
结合非凸正则化和深度先验的低秩张量恢复
本文讨论了低秩张量补全(LRTC)和张量鲁棒主成分分析(TRPCA)这两种在现实世界多维数据恢复中有着广泛应用的方法。为了提高恢复性能,我们将低秩先验与数据驱动的深度先验相结合,提出了LRTC和TRPCA的新型非凸张量恢复模型。具体来说,我们使用张量r rp伪范数来有效地捕获张量的低秩结构,提供更准确的秩近似。此外,引入卷积神经网络(CNN)去噪器学习深度先验信息,进一步提高恢复精度。我们还开发了基于乘法器交替方向法(ADMM)的高效迭代算法来求解所提出的模型。实验结果表明,所提出的方法在LRTC和TRPCA的恢复精度方面都优于目前最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信