Sharp estimates for the Cramér transform of log-concave measures and geometric applications

IF 1.5 1区 数学 Q1 MATHEMATICS
Silouanos Brazitikos , Giorgos Chasapis
{"title":"Sharp estimates for the Cramér transform of log-concave measures and geometric applications","authors":"Silouanos Brazitikos ,&nbsp;Giorgos Chasapis","doi":"10.1016/j.aim.2025.110407","DOIUrl":null,"url":null,"abstract":"<div><div>We establish a new comparison between the Legendre transform of the cumulant generating function and the half-space depth of an arbitrary log-concave probability distribution on the real line, that carries on to the multidimensional setting. Combined with sharp estimates for the Cramér transform of rotationally invariant measures, we are led to some new phase-transition type results for the asymptotics of the expected measure of random polytopes. As a byproduct of our analysis, we address a question on the sharp exponential separability constant for log-concave distributions, in the symmetric case.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110407"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003056","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a new comparison between the Legendre transform of the cumulant generating function and the half-space depth of an arbitrary log-concave probability distribution on the real line, that carries on to the multidimensional setting. Combined with sharp estimates for the Cramér transform of rotationally invariant measures, we are led to some new phase-transition type results for the asymptotics of the expected measure of random polytopes. As a byproduct of our analysis, we address a question on the sharp exponential separability constant for log-concave distributions, in the symmetric case.
对数凹测度的cramsamr变换的尖锐估计及其几何应用
建立了一种新的比较方法,将累积量生成函数的勒让德变换与实线上任意对数凹概率分布的半空间深度进行比较,并将其推广到多维设置。结合旋转不变测度的cramsamr变换的尖锐估计,我们得到了随机多面体期望测度渐近性的一些新的相变型结果。作为我们分析的副产品,我们解决了在对称情况下对数凹分布的尖锐指数可分性常数的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信