TR-VABML: Enhancing Turkish vocabulary acquisition through adaptive machine learning classification

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ahmed Alaff , Çelebi Uluyol
{"title":"TR-VABML: Enhancing Turkish vocabulary acquisition through adaptive machine learning classification","authors":"Ahmed Alaff ,&nbsp;Çelebi Uluyol","doi":"10.1016/j.simpa.2025.100774","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional vocabulary assessments emphasize precision rather than hesitation and rapidity. A machine learning system was developed utilizing behavioral analysis and linguistic insights to identify vocabulary gaps in Turkish language learners. This system integrates hesitation counts, reaction times, and answer attempts with word difficulty and thematic elements. Vocabulary strength was computed using a rule-based equation derived from behavioral indications. With 89% accuracy, 86% precision, 91% recall, and an 88% F1 score, the model showed better performance than the linear and Poisson kernel alternatives. By effectively separating complex interactions, the RBF kernel minimizes unnecessary actions and ensures accurate identification of real shortages.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"25 ","pages":"Article 100774"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266596382500034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional vocabulary assessments emphasize precision rather than hesitation and rapidity. A machine learning system was developed utilizing behavioral analysis and linguistic insights to identify vocabulary gaps in Turkish language learners. This system integrates hesitation counts, reaction times, and answer attempts with word difficulty and thematic elements. Vocabulary strength was computed using a rule-based equation derived from behavioral indications. With 89% accuracy, 86% precision, 91% recall, and an 88% F1 score, the model showed better performance than the linear and Poisson kernel alternatives. By effectively separating complex interactions, the RBF kernel minimizes unnecessary actions and ensures accurate identification of real shortages.
TR-VABML:通过自适应机器学习分类增强土耳其语词汇习得
传统的词汇评估强调准确性,而不是犹豫和快速。利用行为分析和语言学见解开发了一个机器学习系统,以识别土耳其语学习者的词汇差距。这个系统将犹豫次数、反应时间和回答尝试与单词难度和主题元素结合起来。词汇强度是使用基于规则的公式计算的,该公式来源于行为指示。该模型具有89%的准确率,86%的精度,91%的召回率和88%的F1分数,比线性和泊松核替代方案表现出更好的性能。通过有效地分离复杂的交互,RBF内核将不必要的操作最小化,并确保准确识别真正的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信