{"title":"Generalizing the matching decoder for the Chamon code","authors":"Zohar Schwartzman-Nowik, Benjamin J. Brown","doi":"10.22331/q-2025-06-18-1775","DOIUrl":null,"url":null,"abstract":"Different choices of quantum error-correcting codes can reduce the demands on the physical hardware needed to build a quantum computer. To achieve the full potential of a code, we must develop practical decoding algorithms that can correct errors that have occurred with high likelihood. Matching decoders are very good at correcting local errors while also demonstrating fast run times that can keep pace with physical quantum devices. We implement variations of a matching decoder for a three-dimensional, non-CSS, low-density parity check code known as the Chamon code, which has a non-trivial structure that does not lend itself readily to this type of decoding. The non-trivial structure of the syndrome of this code means that we can supplement the decoder with additional steps to improve the threshold error rate, below which the logical failure rate decreases with increasing code distance. We find that a generalized matching decoder that is augmented by a belief-propagation step prior to matching gives a threshold of 10.5% for depolarizing noise.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"7 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-06-18-1775","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Different choices of quantum error-correcting codes can reduce the demands on the physical hardware needed to build a quantum computer. To achieve the full potential of a code, we must develop practical decoding algorithms that can correct errors that have occurred with high likelihood. Matching decoders are very good at correcting local errors while also demonstrating fast run times that can keep pace with physical quantum devices. We implement variations of a matching decoder for a three-dimensional, non-CSS, low-density parity check code known as the Chamon code, which has a non-trivial structure that does not lend itself readily to this type of decoding. The non-trivial structure of the syndrome of this code means that we can supplement the decoder with additional steps to improve the threshold error rate, below which the logical failure rate decreases with increasing code distance. We find that a generalized matching decoder that is augmented by a belief-propagation step prior to matching gives a threshold of 10.5% for depolarizing noise.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.