Polymer Informatics Method for Fast and Accurate Prediction of the Glass Transition Temperature from Chemical Structure

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Sebastian Brierley-Croft, Peter D. Olmsted, Peter J. Hine, Richard J. Mandle, Adam Chaplin, John Grasmeder, Johan Mattsson
{"title":"Polymer Informatics Method for Fast and Accurate Prediction of the Glass Transition Temperature from Chemical Structure","authors":"Sebastian Brierley-Croft, Peter D. Olmsted, Peter J. Hine, Richard J. Mandle, Adam Chaplin, John Grasmeder, Johan Mattsson","doi":"10.1021/acs.macromol.5c00178","DOIUrl":null,"url":null,"abstract":"We present a new polymer informatics framework that successfully predicts the glass transition temperature <i>T</i><sub>g</sub> of polymers based on their chemical structure. The framework combines ideas from group additive properties (GAP) and quantitative structure–property relationship (QSPR) methods, where GAP (or group contributions) assumes that submonomer motifs contribute additively to <i>T</i><sub>g</sub>, and QSPR links <i>T</i><sub>g</sub> to the physicochemical properties of the structure through a set of molecular descriptors. By integrating these methodologies, our combined QSPR–GAP framework overcomes limitations inherent in using either method independently. We demonstrate its application on a data set of 146 linear homo- and copolymers of the poly(aryl ether ketone) (PAEK) family, achieving a median root mean square error of 8 K for <i>T</i><sub>g</sub>, representing a significant improvement over standalone QSPR or GAP models. Moreover, using a genetic algorithm, we identify two molecular descriptors that predominantly drive <i>T</i><sub>g</sub> predictions. The QSPR–GAP framework can be readily adapted to forecast other physical properties and activity (QSAR) or transferred to other polymer families, including conjugated and biopolymers.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"274 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00178","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new polymer informatics framework that successfully predicts the glass transition temperature Tg of polymers based on their chemical structure. The framework combines ideas from group additive properties (GAP) and quantitative structure–property relationship (QSPR) methods, where GAP (or group contributions) assumes that submonomer motifs contribute additively to Tg, and QSPR links Tg to the physicochemical properties of the structure through a set of molecular descriptors. By integrating these methodologies, our combined QSPR–GAP framework overcomes limitations inherent in using either method independently. We demonstrate its application on a data set of 146 linear homo- and copolymers of the poly(aryl ether ketone) (PAEK) family, achieving a median root mean square error of 8 K for Tg, representing a significant improvement over standalone QSPR or GAP models. Moreover, using a genetic algorithm, we identify two molecular descriptors that predominantly drive Tg predictions. The QSPR–GAP framework can be readily adapted to forecast other physical properties and activity (QSAR) or transferred to other polymer families, including conjugated and biopolymers.

Abstract Image

从化学结构快速准确预测玻璃化转变温度的聚合物信息学方法
我们提出了一个新的聚合物信息学框架,可以根据聚合物的化学结构成功地预测其玻璃化转变温度Tg。该框架结合了基团加性(GAP)和定量结构-性质关系(QSPR)方法的思想,其中GAP(或基团贡献)假设亚单体基序对Tg有加性作用,QSPR通过一组分子描述符将Tg与结构的物理化学性质联系起来。通过集成这些方法,我们的组合qsr - gap框架克服了单独使用任何一种方法固有的局限性。我们将其应用于146个聚芳醚酮(PAEK)家族的线性同族和共聚物的数据集,Tg的中位数均方根误差为8 K,比独立的QSPR或GAP模型有显著改善。此外,使用遗传算法,我们确定了两个主要驱动Tg预测的分子描述符。qpr - gap框架可以很容易地用于预测其他物理性质和活性(QSAR)或转移到其他聚合物家族,包括共轭聚合物和生物聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信