Trevor Hedstrom, Markus Kettunen, Daqi Lin, Chris Wyman, Tzu-Mao Li
{"title":"ReSTIR BDPT: Bidirectional ReSTIR Path Tracing with Caustics","authors":"Trevor Hedstrom, Markus Kettunen, Daqi Lin, Chris Wyman, Tzu-Mao Li","doi":"10.1145/3744898","DOIUrl":null,"url":null,"abstract":"Recent spatiotemporal resampling algorithms (ReSTIR) accelerate real-time path tracing by reusing samples between pixels and frames. However, existing methods are limited by the sampling quality of path tracing, making them inefficient for scenes with caustics and hard-to-reach lights. We develop a ReSTIR variant incorporating bidirectional path tracing that significantly improves the sampling quality in these scenes. Combining bidirectional path tracing and ReSTIR introduces multiple challenges: the generalized resampled importance sampling (GRIS) behind ReSTIR is, by default, not aware of how a path was sampled, which complicates reuse of bidirectional paths. Light tracing is also challenging since light subpaths can contribute to all pixels. To address these challenges, we apply GRIS in a sampling technique-aware extended path space, design a bidirectional hybrid shift mapping, and introduce caustics reservoirs that can accumulate caustics across frames. Our method takes around 50ms per frame across our test scenes, and achieves significantly lower error compared to prior unidirectional ReSTIR variants running in equal time.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"12 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3744898","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Recent spatiotemporal resampling algorithms (ReSTIR) accelerate real-time path tracing by reusing samples between pixels and frames. However, existing methods are limited by the sampling quality of path tracing, making them inefficient for scenes with caustics and hard-to-reach lights. We develop a ReSTIR variant incorporating bidirectional path tracing that significantly improves the sampling quality in these scenes. Combining bidirectional path tracing and ReSTIR introduces multiple challenges: the generalized resampled importance sampling (GRIS) behind ReSTIR is, by default, not aware of how a path was sampled, which complicates reuse of bidirectional paths. Light tracing is also challenging since light subpaths can contribute to all pixels. To address these challenges, we apply GRIS in a sampling technique-aware extended path space, design a bidirectional hybrid shift mapping, and introduce caustics reservoirs that can accumulate caustics across frames. Our method takes around 50ms per frame across our test scenes, and achieves significantly lower error compared to prior unidirectional ReSTIR variants running in equal time.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.