Scapula anatomy influences simulated impingement-free range of motion in reverse shoulder arthroplasty.

IF 2.9 2区 医学 Q1 ORTHOPEDICS
Stefan Greiner, Patrick J Denard, Nick Metcalfe, Siddhant Thakur, David Knopf, Brian C Werner
{"title":"Scapula anatomy influences simulated impingement-free range of motion in reverse shoulder arthroplasty.","authors":"Stefan Greiner, Patrick J Denard, Nick Metcalfe, Siddhant Thakur, David Knopf, Brian C Werner","doi":"10.1016/j.jse.2025.05.008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Impingement-free range of motion (ROM) after reverse shoulder arthroplasty (rTSA) may depend on implant position and scapula anatomic parameters. The critical shoulder angle (CSA) is influenced by a combination of scapula parameters. The aim of this study was to evaluate whether the CSA has an influence on impingement-free ROM after rTSA in a virtual simulation using a Statistical Shape Model.</p><p><strong>Materials and methods: </strong>100 scapulae chosen from a database of 10,000 scapulae were used to generate a Statistical Shape Model. Modes corresponding to anatomical characteristics (size, CSA etc.) were defined. Five CSA models were obtained including a mean and 2 standard deviations (SDs) (CSA 32° [-2 SD], CSA 30° [-1 SD], CSA 27° [mean], CSA 25° [+1 SD], and CSA 23° [+2 SD]). A 39-mm glenosphere was virtually implanted in each model. The humeral side was kept consistent with the simulation of a 135° neck-shaft-angle component (Univers Revers, Arthrex Inc., Naples, FL, USA). Glenoid positioning parameters included (1) lateral offset (0-10 mm in 2-mm increments), (2) inferior offset (0, 2.5, 5, 7.5 mm), and (3) posterior offset (0, 2.5, 5 mm). External rotation (ER) at 0° and 60° of abduction and internal rotation (IR) at 60° of abduction were then analyzed for the different positioning parameters (inferior, posterior, and lateral offset) and the combination of 0 mm inferior and 2.5 posterior offset and lateralization from 0-10 mm, 2.5 mm inferior and 0 mm of posterior offset and lateralization (0-10 mm), and the combination of 2.5 mm inferior and 2.5 mm posterior offset and lateralization (0-10 mm).</p><p><strong>Results: </strong>Lower CSA models showed higher ER 0° values (eg, 435% increase from CSA 32° to CSA 23° at 0 mm lateral, inferior, and posterior offset), while models with greater CSAs showed higher IR 60° values (eg, 505% increase from CSA SD 23° to CSA SD 32° at 0 mm lateral, inferior, and posterior offset). By lateralizing, ROM increased in all CSA models (eg, 884% increase from 0 mm to 10 mm lateralization for CSA 32° for ER 0°). Posterior positioning of 2.5 and 5 mm improved ER not IR. Maximal IR at 60° was achieved with no posterior, 2.5 mm of inferior offset, and lateralization between 2-6 mm according to the evaluated CSA.</p><p><strong>Conclusion: </strong>Specific CSA ranges require particular implant positioning strategies to optimize impingement-free ROM in rTSA. To achieve the maximal ROM combination of IR and ER in this simulation, 2.5 mm of inferior offset with no posterior offset and lateralization of 4 mm for CSA ≥30° and 6 mm for CSA SD ≤25° was required.</p>","PeriodicalId":50051,"journal":{"name":"Journal of Shoulder and Elbow Surgery","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Shoulder and Elbow Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jse.2025.05.008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Impingement-free range of motion (ROM) after reverse shoulder arthroplasty (rTSA) may depend on implant position and scapula anatomic parameters. The critical shoulder angle (CSA) is influenced by a combination of scapula parameters. The aim of this study was to evaluate whether the CSA has an influence on impingement-free ROM after rTSA in a virtual simulation using a Statistical Shape Model.

Materials and methods: 100 scapulae chosen from a database of 10,000 scapulae were used to generate a Statistical Shape Model. Modes corresponding to anatomical characteristics (size, CSA etc.) were defined. Five CSA models were obtained including a mean and 2 standard deviations (SDs) (CSA 32° [-2 SD], CSA 30° [-1 SD], CSA 27° [mean], CSA 25° [+1 SD], and CSA 23° [+2 SD]). A 39-mm glenosphere was virtually implanted in each model. The humeral side was kept consistent with the simulation of a 135° neck-shaft-angle component (Univers Revers, Arthrex Inc., Naples, FL, USA). Glenoid positioning parameters included (1) lateral offset (0-10 mm in 2-mm increments), (2) inferior offset (0, 2.5, 5, 7.5 mm), and (3) posterior offset (0, 2.5, 5 mm). External rotation (ER) at 0° and 60° of abduction and internal rotation (IR) at 60° of abduction were then analyzed for the different positioning parameters (inferior, posterior, and lateral offset) and the combination of 0 mm inferior and 2.5 posterior offset and lateralization from 0-10 mm, 2.5 mm inferior and 0 mm of posterior offset and lateralization (0-10 mm), and the combination of 2.5 mm inferior and 2.5 mm posterior offset and lateralization (0-10 mm).

Results: Lower CSA models showed higher ER 0° values (eg, 435% increase from CSA 32° to CSA 23° at 0 mm lateral, inferior, and posterior offset), while models with greater CSAs showed higher IR 60° values (eg, 505% increase from CSA SD 23° to CSA SD 32° at 0 mm lateral, inferior, and posterior offset). By lateralizing, ROM increased in all CSA models (eg, 884% increase from 0 mm to 10 mm lateralization for CSA 32° for ER 0°). Posterior positioning of 2.5 and 5 mm improved ER not IR. Maximal IR at 60° was achieved with no posterior, 2.5 mm of inferior offset, and lateralization between 2-6 mm according to the evaluated CSA.

Conclusion: Specific CSA ranges require particular implant positioning strategies to optimize impingement-free ROM in rTSA. To achieve the maximal ROM combination of IR and ER in this simulation, 2.5 mm of inferior offset with no posterior offset and lateralization of 4 mm for CSA ≥30° and 6 mm for CSA SD ≤25° was required.

肩胛骨解剖对肩关节置换术中模拟撞击自由活动范围的影响。
反向肩关节置换术(rTSA)后无冲击活动范围(ROM)可能取决于植入物位置和肩胛骨解剖参数。临界肩胛骨角度(CSA)受肩胛骨参数组合的影响。本研究的目的是在使用统计形状模型(SSM)的虚拟模拟中评估CSA是否对rTSA后无撞击ROM有影响。材料和方法:从10000个肩胛骨数据库中选择100个肩胛骨生成统计形状模型(SSM)。定义了与解剖特征(尺寸、CSA等)相对应的模式。得到5个CSA模型,包括一个平均值和两个标准差(SD) (CSA 32°(-2 SD)、CSA 30°(-1 SD)、CSA 27°(平均值)、CSA 25°(+1 SD)和CSA 23°(+2 SD)。每个模型都植入了一个39毫米的glenosphere。肱骨侧与135°颈轴角(NSA)组件的模拟保持一致(Univers Revers, Arthrex Inc., Naples, FL, USA)。关节盂定位参数包括:1)侧向偏移量(0-10mm,增量为2mm), 2)下偏量(0,2d。5、5、7.5mm)和3)后偏移(0、2.5、5mm)。然后分析外展0°和60°的外旋(ER)和外展60°的内旋(IR)的不同定位参数(下、后、外侧偏移)以及0-10mm的下、2.5mm后偏移和偏侧组合、0-10mm的下、2.5mm后偏移和偏侧组合、0-10mm的下、2.5mm后偏移和偏侧组合。结果:低CSA模型显示较高的ER 0°值(例如,从CSA 32°到CSA 23°在0mm侧位、下位和后位偏移增加435%),而高CSA模型显示较高的IR 60°值(例如,从CSA SD 23°到CSA SD 32°在0mm侧位、下位和后位偏移增加505%)。通过侧化,所有CSA模型的ROM都增加了(例如,当ER为0°时,CSA 32°侧化从0mm增加到10mm,增加了884%)。后路定位2.5和5mm可改善ER而非IR。根据评估的CSA,在60°处达到最大IR,无后侧偏移2.5mm,侧偏在2-6mm之间。结论:特定的CSA范围需要特定的种植体定位策略来优化rTSA的无冲击ROM。为了在本模拟中实现IR和ER的最大ROM组合,对于CSA≥30°和CSA SD≤25°,需要2.5mm的下偏置,无后偏置,侧移4mm。证据水平:基础科学研究;计算机建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
23.30%
发文量
604
审稿时长
11.2 weeks
期刊介绍: The official publication for eight leading specialty organizations, this authoritative journal is the only publication to focus exclusively on medical, surgical, and physical techniques for treating injury/disease of the upper extremity, including the shoulder girdle, arm, and elbow. Clinically oriented and peer-reviewed, the Journal provides an international forum for the exchange of information on new techniques, instruments, and materials. Journal of Shoulder and Elbow Surgery features vivid photos, professional illustrations, and explicit diagrams that demonstrate surgical approaches and depict implant devices. Topics covered include fractures, dislocations, diseases and injuries of the rotator cuff, imaging techniques, arthritis, arthroscopy, arthroplasty, and rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信