{"title":"PHD3-VHL axis controls HIV-2 infection through oxygen-dependent hydroxylation and degradation of Vpx.","authors":"Kei Miyakawa, Kiho Tanaka, Yoko Ino, Yayoi Kimura, Taichi Kameya, Fuminori Mizukoshi, Mayuko Nishi, Masaru Yokoyama, Jun Nakabayashi, Masako Nomaguchi, Hironori Sato, Hirokazu Kimura, Hirofumi Akari, Tomoyuki Miura, Akinori Takaoka, Hideki Hasegawa, Tetsuro Matano, Yoji Andrew Minamishima, Akihide Ryo","doi":"10.1371/journal.ppat.1013241","DOIUrl":null,"url":null,"abstract":"<p><p>HIV-2 viral protein X (Vpx) plays a pivotal role in antagonizing the host restriction factors, including SAMHD1 and components of the HUSH complex, to facilitate viral replication. However, the regulatory mechanisms controlling Vpx stability remain unclear. In this study, we identify the von Hippel-Lindau (VHL) tumor suppressor as a novel E3 ubiquitin ligase that specifically targets Vpx for proteasomal degradation. Mechanistically, we demonstrate that VHL-mediated degradation depends on the oxygen-dependent hydroxylation of Vpx at proline residue 41 (Pro41), a modification catalyzed by prolyl hydroxylase domain-containing protein 3 (PHD3). Using an integrated approach combining crosslinking mass spectrometry and molecular modeling analyses, we elucidate the structural architecture of the PHD3-Vpx complex, revealing the spatial orientation of the catalytic domain of PHD3 required for Pro41 hydroxylation. Furthermore, we establish the physiological significance of this pathway in human macrophages, where pharmacological inhibition or genetic ablation of VHL or PHD3 enhances HIV-2 infection by facilitating Vpx-mediated SAMHD1 degradation. Collectively, our findings unveil a previously unrecognized oxygen-sensitive regulatory mechanism influencing HIV-2 infection and suggest novel therapeutic strategies targeting Vpx stability through modulation of its prolyl hydroxylation status.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 6","pages":"e1013241"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12201638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1013241","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
HIV-2 viral protein X (Vpx) plays a pivotal role in antagonizing the host restriction factors, including SAMHD1 and components of the HUSH complex, to facilitate viral replication. However, the regulatory mechanisms controlling Vpx stability remain unclear. In this study, we identify the von Hippel-Lindau (VHL) tumor suppressor as a novel E3 ubiquitin ligase that specifically targets Vpx for proteasomal degradation. Mechanistically, we demonstrate that VHL-mediated degradation depends on the oxygen-dependent hydroxylation of Vpx at proline residue 41 (Pro41), a modification catalyzed by prolyl hydroxylase domain-containing protein 3 (PHD3). Using an integrated approach combining crosslinking mass spectrometry and molecular modeling analyses, we elucidate the structural architecture of the PHD3-Vpx complex, revealing the spatial orientation of the catalytic domain of PHD3 required for Pro41 hydroxylation. Furthermore, we establish the physiological significance of this pathway in human macrophages, where pharmacological inhibition or genetic ablation of VHL or PHD3 enhances HIV-2 infection by facilitating Vpx-mediated SAMHD1 degradation. Collectively, our findings unveil a previously unrecognized oxygen-sensitive regulatory mechanism influencing HIV-2 infection and suggest novel therapeutic strategies targeting Vpx stability through modulation of its prolyl hydroxylation status.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.