Automated model refinement using perturbation-observation pairs.

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Kyu Hyong Park, Jordan C Rozum, Réka Albert
{"title":"Automated model refinement using perturbation-observation pairs.","authors":"Kyu Hyong Park, Jordan C Rozum, Réka Albert","doi":"10.1038/s41540-025-00532-y","DOIUrl":null,"url":null,"abstract":"<p><p>In modeling signal transduction networks, it is common to manually integrate experimental evidence through a process that involves trial and error constrained by domain knowledge. We implement a genetic algorithm-based workflow (boolmore) to streamline Boolean model refinement. Boolmore adjusts the functions of the model to enhance agreement with a corpus of curated perturbation-observation pairs. It leverages existing mechanistic knowledge to automatically limit the search space to biologically plausible models. We demonstrate boolmore's effectiveness in a published plant signaling model that exemplifies the challenges of manual model construction and refinement. The refined models surpass the accuracy gain achieved over two years of manual revision and yield new, testable predictions. By automating the laborious task of model validation and refinement, this workflow is a step towards fast, fully automated, and reliable model construction.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"65"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00532-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In modeling signal transduction networks, it is common to manually integrate experimental evidence through a process that involves trial and error constrained by domain knowledge. We implement a genetic algorithm-based workflow (boolmore) to streamline Boolean model refinement. Boolmore adjusts the functions of the model to enhance agreement with a corpus of curated perturbation-observation pairs. It leverages existing mechanistic knowledge to automatically limit the search space to biologically plausible models. We demonstrate boolmore's effectiveness in a published plant signaling model that exemplifies the challenges of manual model construction and refinement. The refined models surpass the accuracy gain achieved over two years of manual revision and yield new, testable predictions. By automating the laborious task of model validation and refinement, this workflow is a step towards fast, fully automated, and reliable model construction.

使用扰动观测对的自动模型精化。
在对信号转导网络进行建模时,通常需要通过受领域知识约束的试错过程手动整合实验证据。我们实现了一个基于遗传算法的工作流(boolmore)来简化布尔模型的细化。Boolmore调整了模型的功能,以增强与策划的扰动观测对的语料库的一致性。它利用现有的机械知识自动将搜索空间限制在生物学上合理的模型上。我们在一个已发表的植物信号模型中证明了boolmore的有效性,该模型举例说明了手动模型构建和改进的挑战。经过改进的模型的精度超过了过去两年人工修正所获得的精度,并产生了新的、可测试的预测。通过自动化费力的模型验证和细化任务,这个工作流是朝着快速、完全自动化和可靠的模型构建迈出的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信