Executioner caspase is proximal to Fasciclin 3 which facilitates non-lethal activation in Drosophila olfactory receptor neurons.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-06-17 DOI:10.7554/eLife.99650
Masaya Muramoto, Nozomi Hanawa, Misako Okumura, Takahiro Chihara, Masayuki Miura, Natsuki Shinoda
{"title":"Executioner caspase is proximal to Fasciclin 3 which facilitates non-lethal activation in <i>Drosophila</i> olfactory receptor neurons.","authors":"Masaya Muramoto, Nozomi Hanawa, Misako Okumura, Takahiro Chihara, Masayuki Miura, Natsuki Shinoda","doi":"10.7554/eLife.99650","DOIUrl":null,"url":null,"abstract":"<p><p>The nervous system undergoes functional modification independent of cell turnover. Caspase participates in reversible neuronal modulation via non-lethal activation. However, the mechanism that enables non-lethal activation remains unclear. Here, we analyzed proximal proteins of <i>Drosophila</i> executioner caspase in the adult brain using TurboID. We discovered that executioner caspase Drice is, as an inactive proform, proximal to cell membrane proteins, including a specific splicing isoform of cell adhesion molecule Fasciclin 3 (Fas3), Fas3G. To investigate whether sequestration of executioner caspase to plasma membrane of axons is the mechanism for non-lethal activation, we developed a Gal4-Manipulated Area-Specific CaspaseTracker/CasExpress system for sensitive monitoring of caspase activity near the plasma membrane. We demonstrated that <i>Fas3G</i> overexpression promotes caspase activation in olfactory receptor neurons without killing them, by inducing expression of initiator caspase Dronc, which also comes close to Fas3G. Physiologically, <i>Fas3G</i> overexpression-facilitated non-lethal caspase activation suppresses innate olfactory attraction behavior. Our findings suggest that subcellularly restricted caspase activation, defined by caspase-proximal proteins, is the mechanism for non-lethal activation, opening the methodological development of reversible modification of neuronal function via regulating caspase-proximal proteins.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.99650","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nervous system undergoes functional modification independent of cell turnover. Caspase participates in reversible neuronal modulation via non-lethal activation. However, the mechanism that enables non-lethal activation remains unclear. Here, we analyzed proximal proteins of Drosophila executioner caspase in the adult brain using TurboID. We discovered that executioner caspase Drice is, as an inactive proform, proximal to cell membrane proteins, including a specific splicing isoform of cell adhesion molecule Fasciclin 3 (Fas3), Fas3G. To investigate whether sequestration of executioner caspase to plasma membrane of axons is the mechanism for non-lethal activation, we developed a Gal4-Manipulated Area-Specific CaspaseTracker/CasExpress system for sensitive monitoring of caspase activity near the plasma membrane. We demonstrated that Fas3G overexpression promotes caspase activation in olfactory receptor neurons without killing them, by inducing expression of initiator caspase Dronc, which also comes close to Fas3G. Physiologically, Fas3G overexpression-facilitated non-lethal caspase activation suppresses innate olfactory attraction behavior. Our findings suggest that subcellularly restricted caspase activation, defined by caspase-proximal proteins, is the mechanism for non-lethal activation, opening the methodological development of reversible modification of neuronal function via regulating caspase-proximal proteins.

刽子手半胱天冬酶是在果蝇嗅觉受体神经元中促进非致死性激活的fasiclin 3的近邻。
神经系统经历独立于细胞更新的功能改变。Caspase通过非致死激活参与可逆的神经元调节。然而,非致死激活的机制尚不清楚。在这里,我们使用TurboID分析了成人大脑中果蝇刽子手半胱天冬酶的近端蛋白。我们发现,刽子手caspase price作为一种无活性的形式,靠近细胞膜蛋白,包括细胞粘附分子fasiclin 3 (Fas3), Fas3G的特定剪接异构体。为了研究刽子手caspase在轴突质膜上的隔离是否是非致死性激活的机制,我们开发了一个gal4 -操纵区域特异性CaspaseTracker/CasExpress系统,用于敏感监测质膜附近的caspase活性。我们证明,Fas3G过表达通过诱导caspase Dronc的表达促进嗅觉受体神经元中caspase的激活,而不会杀死它们,caspase Dronc也接近Fas3G。生理上,Fas3G过表达促进非致死性caspase激活抑制先天嗅觉吸引行为。我们的研究结果表明,由caspase-近端蛋白定义的亚细胞限制性caspase激活是非致死激活的机制,开启了通过调节caspase-近端蛋白可逆修饰神经元功能的方法学发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信