{"title":"Executioner caspase is proximal to Fasciclin 3 which facilitates non-lethal activation in <i>Drosophila</i> olfactory receptor neurons.","authors":"Masaya Muramoto, Nozomi Hanawa, Misako Okumura, Takahiro Chihara, Masayuki Miura, Natsuki Shinoda","doi":"10.7554/eLife.99650","DOIUrl":null,"url":null,"abstract":"<p><p>The nervous system undergoes functional modification independent of cell turnover. Caspase participates in reversible neuronal modulation via non-lethal activation. However, the mechanism that enables non-lethal activation remains unclear. Here, we analyzed proximal proteins of <i>Drosophila</i> executioner caspase in the adult brain using TurboID. We discovered that executioner caspase Drice is, as an inactive proform, proximal to cell membrane proteins, including a specific splicing isoform of cell adhesion molecule Fasciclin 3 (Fas3), Fas3G. To investigate whether sequestration of executioner caspase to plasma membrane of axons is the mechanism for non-lethal activation, we developed a Gal4-Manipulated Area-Specific CaspaseTracker/CasExpress system for sensitive monitoring of caspase activity near the plasma membrane. We demonstrated that <i>Fas3G</i> overexpression promotes caspase activation in olfactory receptor neurons without killing them, by inducing expression of initiator caspase Dronc, which also comes close to Fas3G. Physiologically, <i>Fas3G</i> overexpression-facilitated non-lethal caspase activation suppresses innate olfactory attraction behavior. Our findings suggest that subcellularly restricted caspase activation, defined by caspase-proximal proteins, is the mechanism for non-lethal activation, opening the methodological development of reversible modification of neuronal function via regulating caspase-proximal proteins.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.99650","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The nervous system undergoes functional modification independent of cell turnover. Caspase participates in reversible neuronal modulation via non-lethal activation. However, the mechanism that enables non-lethal activation remains unclear. Here, we analyzed proximal proteins of Drosophila executioner caspase in the adult brain using TurboID. We discovered that executioner caspase Drice is, as an inactive proform, proximal to cell membrane proteins, including a specific splicing isoform of cell adhesion molecule Fasciclin 3 (Fas3), Fas3G. To investigate whether sequestration of executioner caspase to plasma membrane of axons is the mechanism for non-lethal activation, we developed a Gal4-Manipulated Area-Specific CaspaseTracker/CasExpress system for sensitive monitoring of caspase activity near the plasma membrane. We demonstrated that Fas3G overexpression promotes caspase activation in olfactory receptor neurons without killing them, by inducing expression of initiator caspase Dronc, which also comes close to Fas3G. Physiologically, Fas3G overexpression-facilitated non-lethal caspase activation suppresses innate olfactory attraction behavior. Our findings suggest that subcellularly restricted caspase activation, defined by caspase-proximal proteins, is the mechanism for non-lethal activation, opening the methodological development of reversible modification of neuronal function via regulating caspase-proximal proteins.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.