Structural polymorphism of the antigenic loop in HBV surface antigen dictates binding of diverse neutralizing antibodies.

IF 13 1区 生物学 Q1 CELL BIOLOGY
Xiao He, Weiyu Tao, Yunlu Kang, Jiaxuan Xu, Xiaoyu Liu, Lei Chen
{"title":"Structural polymorphism of the antigenic loop in HBV surface antigen dictates binding of diverse neutralizing antibodies.","authors":"Xiao He, Weiyu Tao, Yunlu Kang, Jiaxuan Xu, Xiaoyu Liu, Lei Chen","doi":"10.1038/s41421-025-00803-2","DOIUrl":null,"url":null,"abstract":"<p><p>The Hepatitis B Virus (HBV) poses a significant health threat, causing millions of deaths each year. Hepatitis B surface antigen (HBsAg), the sole membrane protein on the HBV viral envelope, plays crucial roles in viral attachment to host cells and serves as the target for neutralizing antibodies (NAbs). Despite its functional and therapeutic significance, the mechanisms by which NAbs recognize HBsAg remain elusive. Here, we found that HBsAg proteins exist in distinct subtypes and are recognized by different groups of antibodies. Cryo-electron microscopy (Cryo-EM) structures of HBsAg dimers in complex with NAb Fab fragments reveal that the antigenic loop (AGL) of these distinct HBsAg types share a common structural core comprised of four β-strands. However, their surface structures exhibit unexpected polymorphism due to distinct disulfide bond linkages within the AGL region. This structural polymorphism determines the recognition of HBsAg by different groups of NAbs.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"57"},"PeriodicalIF":13.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00803-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Hepatitis B Virus (HBV) poses a significant health threat, causing millions of deaths each year. Hepatitis B surface antigen (HBsAg), the sole membrane protein on the HBV viral envelope, plays crucial roles in viral attachment to host cells and serves as the target for neutralizing antibodies (NAbs). Despite its functional and therapeutic significance, the mechanisms by which NAbs recognize HBsAg remain elusive. Here, we found that HBsAg proteins exist in distinct subtypes and are recognized by different groups of antibodies. Cryo-electron microscopy (Cryo-EM) structures of HBsAg dimers in complex with NAb Fab fragments reveal that the antigenic loop (AGL) of these distinct HBsAg types share a common structural core comprised of four β-strands. However, their surface structures exhibit unexpected polymorphism due to distinct disulfide bond linkages within the AGL region. This structural polymorphism determines the recognition of HBsAg by different groups of NAbs.

HBV表面抗原抗原环的结构多态性决定了多种中和抗体的结合。
乙型肝炎病毒(HBV)对健康构成重大威胁,每年造成数百万人死亡。乙型肝炎表面抗原(HBsAg)是HBV病毒包膜上唯一的膜蛋白,在病毒附着宿主细胞中起着至关重要的作用,并作为中和抗体(nab)的靶点。尽管nab具有功能和治疗意义,但其识别HBsAg的机制尚不明确。在这里,我们发现HBsAg蛋白以不同的亚型存在,并被不同的抗体群识别。与NAb Fab片段复合物的HBsAg二聚体的冷冻电镜(cro - em)结构显示,这些不同类型的HBsAg的抗原环(AGL)具有由四条β-链组成的共同结构核心。然而,由于AGL区域内不同的二硫键连接,它们的表面结构表现出意想不到的多态性。这种结构多态性决定了不同类型的nab对HBsAg的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信