Yu-Tao Deng, Longfei Ma, Yixiao Mei, Ji-Shuai Wang, Xue-Hui Bai, Xuan-Jie Zheng, Jin-Xuan Ren, Da Zhong, Bing-Lin Zhou, Jia Dan, Xue Li, Yong-Jing Gao, Lina Yu, Min Yan, Bao-Chun Jiang
{"title":"Amphiregulin contributes to neuropathic pain by enhancing glycolysis that stimulates histone lactylation in sensory neurons","authors":"Yu-Tao Deng, Longfei Ma, Yixiao Mei, Ji-Shuai Wang, Xue-Hui Bai, Xuan-Jie Zheng, Jin-Xuan Ren, Da Zhong, Bing-Lin Zhou, Jia Dan, Xue Li, Yong-Jing Gao, Lina Yu, Min Yan, Bao-Chun Jiang","doi":"10.1126/scisignal.adr9397","DOIUrl":null,"url":null,"abstract":"<div >The genesis of neuropathic pain after peripheral nerve injury is associated with changes in gene expression and cell metabolism in sensory neurons and the release of inflammatory cytokines. Here, we connected glycolytic metabolism induced by the epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) to histone lactylation and changes in gene expression that promote chronic neuropathic pain. In both male and female mice subjected to peripheral nerve injury, the mRNA and protein abundance of AREG and its receptor EGFR was increased in dorsal root ganglia (DRGs). AREG-EGFR signaling induced glycolytic metabolism by activating the kinase PKM2. An increase in the glycolytic byproduct lactate facilitated lactylation of the histone lysines H3K18 and H4K12 by the lactyltransferase p300 in DRG neurons. These modifications promoted the expression of genes encoding various proinflammatory and pronociceptive proteins that contribute to the development and maintenance of pain. Deletion or knockdown of AREG or pharmacologically inhibiting EGFR, PKM2, or p300 alleviated neuropathic pain in mice and attenuated the injury-induced hyperexcitability of nociceptive neurons. Targeting this metabolically driven epigenetic mechanism may be a way to treat neuropathic pain in patients.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 891","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adr9397","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The genesis of neuropathic pain after peripheral nerve injury is associated with changes in gene expression and cell metabolism in sensory neurons and the release of inflammatory cytokines. Here, we connected glycolytic metabolism induced by the epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) to histone lactylation and changes in gene expression that promote chronic neuropathic pain. In both male and female mice subjected to peripheral nerve injury, the mRNA and protein abundance of AREG and its receptor EGFR was increased in dorsal root ganglia (DRGs). AREG-EGFR signaling induced glycolytic metabolism by activating the kinase PKM2. An increase in the glycolytic byproduct lactate facilitated lactylation of the histone lysines H3K18 and H4K12 by the lactyltransferase p300 in DRG neurons. These modifications promoted the expression of genes encoding various proinflammatory and pronociceptive proteins that contribute to the development and maintenance of pain. Deletion or knockdown of AREG or pharmacologically inhibiting EGFR, PKM2, or p300 alleviated neuropathic pain in mice and attenuated the injury-induced hyperexcitability of nociceptive neurons. Targeting this metabolically driven epigenetic mechanism may be a way to treat neuropathic pain in patients.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.