Ranking the Properties Important for Understanding Noncovalent Bond Strength

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Steve Scheiner
{"title":"Ranking the Properties Important for Understanding Noncovalent Bond Strength","authors":"Steve Scheiner","doi":"10.1002/jcc.70163","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The interaction energies within noncovalent bonds can be partitioned into electrostatic, induction, and dispersive attractive elements. A set of complexes comprising halogen, chalcogen, pnicogen, and tetrel bonds, are studied by quantum chemical calculations to assess how each of these components can be understood on the basis of properties of the constituent monomers. The variation of the electrostatic term, which accounts for over half of the total attractive energy, can be approximated, but with only modest accuracy, by combination of the maximum and minimum of the electrostatic potential on the two subunits. Induction represents a smaller contribution to the total, but is well connected with the NBO interorbital transfer energy, as opposed to the reciprocal of the HOMO-LUMO gap which behaves quite differently than IND. Of the various AIM parameters, both the bond critical point density and energy density are closely related to the full interaction energy.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 17","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70163","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction energies within noncovalent bonds can be partitioned into electrostatic, induction, and dispersive attractive elements. A set of complexes comprising halogen, chalcogen, pnicogen, and tetrel bonds, are studied by quantum chemical calculations to assess how each of these components can be understood on the basis of properties of the constituent monomers. The variation of the electrostatic term, which accounts for over half of the total attractive energy, can be approximated, but with only modest accuracy, by combination of the maximum and minimum of the electrostatic potential on the two subunits. Induction represents a smaller contribution to the total, but is well connected with the NBO interorbital transfer energy, as opposed to the reciprocal of the HOMO-LUMO gap which behaves quite differently than IND. Of the various AIM parameters, both the bond critical point density and energy density are closely related to the full interaction energy.

Abstract Image

对理解非共价键强度重要的性质排序
非共价键内的相互作用能可分为静电、感应和色散吸引元素。通过量子化学计算,研究了一组由卤素、硫、烟原和四萜键组成的配合物,以评估如何根据组成单体的性质来理解这些成分。占总吸引能一半以上的静电项的变化,可以用两个亚单位上静电势的最大值和最小值的组合来近似,但精度不高。感应对总能量的贡献较小,但与NBO轨道间转移能量有很好的关系,而与之相反的是HOMO-LUMO间隙的互反,其行为与IND大不相同。在各种AIM参数中,键临界点密度和能量密度都与完全相互作用能密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信