{"title":"Quantum Reinforcement Learning for QoS-Aware Real-Time Job Scheduling in Cloud Systems","authors":"Shuhong Dai;Nishant Saurabh;Qingle Wang;Jiawei Nian;Shuwen Kan;Ying Mao;Long Cheng","doi":"10.1109/JSYST.2025.3568752","DOIUrl":null,"url":null,"abstract":"Effective cloud job scheduling is essential for enhancing the performance and operational efficiency of cloud-based services, directly impacting their quality of service (QoS). Among existing methodologies, deep reinforcement learning (DRL) has proven effective in addressing complex, multidimensional optimization challenges in real-time scheduling. With advancements in quantum computing, quantum neural networks (QNNs) are showing unique advantages in information representation and processing. This study is the first to explore quantum reinforcement learning (QRL) for real-time job scheduling in cloud systems. Specifically, we propose a QRL framework that utilizes variational and encoding layers to convert state information into quantum data, repeatedly embedded into a QNN to compute optimal value returns. This approach aims to enhance QoS by improving job execution success rates and reducing average response times with unpredictable job arrivals. We present the detailed design of our approach, and our simulation results demonstrate that the QRL method significantly exceeds established baselines, including those based on DRL, across a range of workload intensities and computational resource configurations. This is particularly evident under high-load conditions, where our approach can achieve 55.2% higher success rates, underscoring its significant potential in cloud job scheduling optimization.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 2","pages":"471-482"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11015611/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Effective cloud job scheduling is essential for enhancing the performance and operational efficiency of cloud-based services, directly impacting their quality of service (QoS). Among existing methodologies, deep reinforcement learning (DRL) has proven effective in addressing complex, multidimensional optimization challenges in real-time scheduling. With advancements in quantum computing, quantum neural networks (QNNs) are showing unique advantages in information representation and processing. This study is the first to explore quantum reinforcement learning (QRL) for real-time job scheduling in cloud systems. Specifically, we propose a QRL framework that utilizes variational and encoding layers to convert state information into quantum data, repeatedly embedded into a QNN to compute optimal value returns. This approach aims to enhance QoS by improving job execution success rates and reducing average response times with unpredictable job arrivals. We present the detailed design of our approach, and our simulation results demonstrate that the QRL method significantly exceeds established baselines, including those based on DRL, across a range of workload intensities and computational resource configurations. This is particularly evident under high-load conditions, where our approach can achieve 55.2% higher success rates, underscoring its significant potential in cloud job scheduling optimization.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.