DAMAGE: Directed Heterogeneous Network Attack Sequence Inference Through Graph Attention Matrix Generation Embedding and Reinforcement Learning

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hongfu Liu;Chengyi Zeng;Zhen Li;Lina Lu;Jing Chen;Zongtan Zhou
{"title":"DAMAGE: Directed Heterogeneous Network Attack Sequence Inference Through Graph Attention Matrix Generation Embedding and Reinforcement Learning","authors":"Hongfu Liu;Chengyi Zeng;Zhen Li;Lina Lu;Jing Chen;Zongtan Zhou","doi":"10.1109/JSYST.2025.3547491","DOIUrl":null,"url":null,"abstract":"Distributed heterogeneous multiagent systems (DHMASs) link geographically dispersed agents through networks, harnessing information technology to foster collaboration. Considering the mainstream status of wireless communication in modern multiagent systems and the differences in the performance of interagent communication devices, we believe that it is appropriate to use directed heterogeneous networks (DHNs) to model distributed heterogeneous multiagent systems. This model not only reflects the directionality of interagent communication but also reflects the complexity of communication due to performance differences, thus providing a more accurate framework for understanding and optimizing system behavior. The study of disintegration in DHNs is vital for enhancing the decision-making agility of DHMAS. We introduce <underline>D</u>irected heterogeneous network <underline>A</u>ttack sequence inference through graph attention <underline>MA</u>trix <underline>G</u>eneration <underline>E</u>mbedding and reinforcement learning (DAMAGE), an algorithm that integrates graph neural networks and reinforcement learning within an inductive reasoning framework. DAMAGE is designed to optimize the generation of disintegration strategies, improving the efficiency of network breakdown processes. Our approach includes a directed network embedding technique with a graph attention matrix generation module, which enhances the utilization of imperfect network structure information. Through ablation studies, we demonstrate that DAMAGE not only increases the effectiveness of network disintegration under perfect topological conditions but also maintains robustness in scenario with imperfect topological information.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 2","pages":"392-403"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10944257/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed heterogeneous multiagent systems (DHMASs) link geographically dispersed agents through networks, harnessing information technology to foster collaboration. Considering the mainstream status of wireless communication in modern multiagent systems and the differences in the performance of interagent communication devices, we believe that it is appropriate to use directed heterogeneous networks (DHNs) to model distributed heterogeneous multiagent systems. This model not only reflects the directionality of interagent communication but also reflects the complexity of communication due to performance differences, thus providing a more accurate framework for understanding and optimizing system behavior. The study of disintegration in DHNs is vital for enhancing the decision-making agility of DHMAS. We introduce Directed heterogeneous network Attack sequence inference through graph attention MAtrix Generation Embedding and reinforcement learning (DAMAGE), an algorithm that integrates graph neural networks and reinforcement learning within an inductive reasoning framework. DAMAGE is designed to optimize the generation of disintegration strategies, improving the efficiency of network breakdown processes. Our approach includes a directed network embedding technique with a graph attention matrix generation module, which enhances the utilization of imperfect network structure information. Through ablation studies, we demonstrate that DAMAGE not only increases the effectiveness of network disintegration under perfect topological conditions but also maintains robustness in scenario with imperfect topological information.
损害:通过图注意矩阵生成嵌入和强化学习的定向异构网络攻击序列推断
分布式异构多代理系统(DHMASs)通过网络连接地理上分散的代理,利用信息技术促进协作。考虑到无线通信在现代多智能体系统中的主流地位和智能体间通信设备的性能差异,我们认为使用定向异构网络(dhn)来建模分布式异构多智能体系统是合适的。该模型不仅反映了智能体间通信的方向性,也反映了由于性能差异而导致的通信复杂性,从而为理解和优化系统行为提供了更准确的框架。研究DHNs的解体对提高DHMAS的决策敏捷性具有重要意义。我们通过图注意矩阵生成嵌入和强化学习(DAMAGE)引入有向异构网络攻击序列推理,这是一种在归纳推理框架内集成图神经网络和强化学习的算法。该算法旨在优化分解策略的生成,提高网络分解过程的效率。该方法采用了一种有向网络嵌入技术和一个图注意矩阵生成模块,增强了对不完全网络结构信息的利用。通过烧蚀研究,我们证明了损伤算法不仅在完美拓扑条件下提高了网络分解的有效性,而且在不完美拓扑条件下保持了网络分解的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Systems Journal
IEEE Systems Journal 工程技术-电信学
CiteScore
9.80
自引率
6.80%
发文量
572
审稿时长
4.9 months
期刊介绍: This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信