{"title":"DAMAGE: Directed Heterogeneous Network Attack Sequence Inference Through Graph Attention Matrix Generation Embedding and Reinforcement Learning","authors":"Hongfu Liu;Chengyi Zeng;Zhen Li;Lina Lu;Jing Chen;Zongtan Zhou","doi":"10.1109/JSYST.2025.3547491","DOIUrl":null,"url":null,"abstract":"Distributed heterogeneous multiagent systems (DHMASs) link geographically dispersed agents through networks, harnessing information technology to foster collaboration. Considering the mainstream status of wireless communication in modern multiagent systems and the differences in the performance of interagent communication devices, we believe that it is appropriate to use directed heterogeneous networks (DHNs) to model distributed heterogeneous multiagent systems. This model not only reflects the directionality of interagent communication but also reflects the complexity of communication due to performance differences, thus providing a more accurate framework for understanding and optimizing system behavior. The study of disintegration in DHNs is vital for enhancing the decision-making agility of DHMAS. We introduce <underline>D</u>irected heterogeneous network <underline>A</u>ttack sequence inference through graph attention <underline>MA</u>trix <underline>G</u>eneration <underline>E</u>mbedding and reinforcement learning (DAMAGE), an algorithm that integrates graph neural networks and reinforcement learning within an inductive reasoning framework. DAMAGE is designed to optimize the generation of disintegration strategies, improving the efficiency of network breakdown processes. Our approach includes a directed network embedding technique with a graph attention matrix generation module, which enhances the utilization of imperfect network structure information. Through ablation studies, we demonstrate that DAMAGE not only increases the effectiveness of network disintegration under perfect topological conditions but also maintains robustness in scenario with imperfect topological information.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 2","pages":"392-403"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10944257/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed heterogeneous multiagent systems (DHMASs) link geographically dispersed agents through networks, harnessing information technology to foster collaboration. Considering the mainstream status of wireless communication in modern multiagent systems and the differences in the performance of interagent communication devices, we believe that it is appropriate to use directed heterogeneous networks (DHNs) to model distributed heterogeneous multiagent systems. This model not only reflects the directionality of interagent communication but also reflects the complexity of communication due to performance differences, thus providing a more accurate framework for understanding and optimizing system behavior. The study of disintegration in DHNs is vital for enhancing the decision-making agility of DHMAS. We introduce Directed heterogeneous network Attack sequence inference through graph attention MAtrix Generation Embedding and reinforcement learning (DAMAGE), an algorithm that integrates graph neural networks and reinforcement learning within an inductive reasoning framework. DAMAGE is designed to optimize the generation of disintegration strategies, improving the efficiency of network breakdown processes. Our approach includes a directed network embedding technique with a graph attention matrix generation module, which enhances the utilization of imperfect network structure information. Through ablation studies, we demonstrate that DAMAGE not only increases the effectiveness of network disintegration under perfect topological conditions but also maintains robustness in scenario with imperfect topological information.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.