Unbiased Anomalous Trajectory Detection With Hierarchical Sequence Modeling

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiangjie Kong;Yuwei He;Guojiang Shen;Jiaxin Du;Zhi Liu;Ivan Lee
{"title":"Unbiased Anomalous Trajectory Detection With Hierarchical Sequence Modeling","authors":"Xiangjie Kong;Yuwei He;Guojiang Shen;Jiaxin Du;Zhi Liu;Ivan Lee","doi":"10.1109/TCE.2024.3523565","DOIUrl":null,"url":null,"abstract":"Anomalous trajectory detection plays an important role in the field of trajectory big data mining, providing significant support for identifying drivers traveling at inappropriate speeds and detecting cab fraud. Current studies often use equal-sized grids to represent trajectory points, and they mainly focus on the general shape of trajectories while ignoring the spatial density distribution of trajectories. In addition, existing generative models are biased in learning the patterns of normal trajectories, and the same bias exists in processing labeling information. To address the above two problems, we propose an unbiased anomalous trajectory detection method (HS-UATD) based on hierarchical sequence modeling. Our method constructs a hierarchical structure of the entire spatial region using a quadtree, which captures the location density distribution of the entire spatial region. Our model captures the rich spatio-temporal pattern of trajectories containing spatial hierarchical information and learns the probability distribution of unbiased normal trajectories. We employ both clustering algorithms and anomaly injection techniques to obtain unbiased labeling information, and we define trajectories that deviate from the normal pattern as anomalies. Through extensive experiments on three unbiased, biased and real trajectory datasets, we validate the effectiveness of the method.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 1","pages":"388-401"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817508/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Anomalous trajectory detection plays an important role in the field of trajectory big data mining, providing significant support for identifying drivers traveling at inappropriate speeds and detecting cab fraud. Current studies often use equal-sized grids to represent trajectory points, and they mainly focus on the general shape of trajectories while ignoring the spatial density distribution of trajectories. In addition, existing generative models are biased in learning the patterns of normal trajectories, and the same bias exists in processing labeling information. To address the above two problems, we propose an unbiased anomalous trajectory detection method (HS-UATD) based on hierarchical sequence modeling. Our method constructs a hierarchical structure of the entire spatial region using a quadtree, which captures the location density distribution of the entire spatial region. Our model captures the rich spatio-temporal pattern of trajectories containing spatial hierarchical information and learns the probability distribution of unbiased normal trajectories. We employ both clustering algorithms and anomaly injection techniques to obtain unbiased labeling information, and we define trajectories that deviate from the normal pattern as anomalies. Through extensive experiments on three unbiased, biased and real trajectory datasets, we validate the effectiveness of the method.
基于层次序列建模的无偏异常轨迹检测
异常轨迹检测在轨迹大数据挖掘领域中占有重要地位,为识别超速行驶驾驶员和检测出租车欺诈行为提供重要支持。目前的研究多采用等尺寸网格来表示轨迹点,主要关注轨迹的一般形状,而忽略了轨迹的空间密度分布。此外,现有的生成模型在学习正常轨迹模式时存在偏差,在处理标记信息时也存在同样的偏差。为了解决上述两个问题,我们提出了一种基于层次序列建模的无偏异常轨迹检测方法(HS-UATD)。该方法利用四叉树构造整个空间区域的层次结构,获取整个空间区域的位置密度分布。我们的模型捕获了包含空间层次信息的轨迹的丰富时空模式,并学习了无偏正态轨迹的概率分布。我们采用聚类算法和异常注入技术来获得无偏标记信息,并将偏离正常模式的轨迹定义为异常。通过对三个无偏、有偏和真实轨迹数据集的大量实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信