BitterEN: A novel ensemble model for the identification of bitter peptide

IF 6.3 2区 医学 Q1 BIOLOGY
Md Fahim Sultan , Tasmin Karim , Md Shazzad Hossain Shaon , Md Mamun Ali , Sobhy M. Ibrahim , Mst Shapna Akter , Kawsar Ahmed , Francis M. Bui , Mohammad Ali Moni
{"title":"BitterEN: A novel ensemble model for the identification of bitter peptide","authors":"Md Fahim Sultan ,&nbsp;Tasmin Karim ,&nbsp;Md Shazzad Hossain Shaon ,&nbsp;Md Mamun Ali ,&nbsp;Sobhy M. Ibrahim ,&nbsp;Mst Shapna Akter ,&nbsp;Kawsar Ahmed ,&nbsp;Francis M. Bui ,&nbsp;Mohammad Ali Moni","doi":"10.1016/j.compbiomed.2025.110528","DOIUrl":null,"url":null,"abstract":"<div><div>Bitter peptides are short amino acid chains that produce a bitter taste. These peptides are made primarily in food processing through the chemical reduction of peptides. The bitterness arises from the specific sequence of amino acids in peptides, which interact with the bitter taste receptors on the human tongue. These peptides influence nutrition and health, offering insights into protein digestion and bioactive advantages. Hence, correctly identifying bitter peptides is pivotal for revealing the biochemical properties of efficient medication. The computational approach is most suitable for identifying bitterness, where most studies obtained insufficient outcomes. Therefore, the current study developed an ensemble-based framework called “BitterEN”, where we integrate the Gradient Boosting (GB) and Multi-layer Perception (MLP) methods. Our proposed method improved more than 3 % of accuracy compare to all of the state-of-the-arts methods, where the proposed approach achieved 0.995 accuracy in merged feature extractions with the Random Forest (RF) feature selection method. We used 50 iterations over the performance evaluation phases to enable a more exact generalization of model performance. In addition, we provided a convenient GitHub-based version of our bitter peptide identification. It highlights the practical applicability of these findings. We are optimistic that the proposed approach might benefit many fields, including healthcare development and nutritional science.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"195 ","pages":"Article 110528"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525008790","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bitter peptides are short amino acid chains that produce a bitter taste. These peptides are made primarily in food processing through the chemical reduction of peptides. The bitterness arises from the specific sequence of amino acids in peptides, which interact with the bitter taste receptors on the human tongue. These peptides influence nutrition and health, offering insights into protein digestion and bioactive advantages. Hence, correctly identifying bitter peptides is pivotal for revealing the biochemical properties of efficient medication. The computational approach is most suitable for identifying bitterness, where most studies obtained insufficient outcomes. Therefore, the current study developed an ensemble-based framework called “BitterEN”, where we integrate the Gradient Boosting (GB) and Multi-layer Perception (MLP) methods. Our proposed method improved more than 3 % of accuracy compare to all of the state-of-the-arts methods, where the proposed approach achieved 0.995 accuracy in merged feature extractions with the Random Forest (RF) feature selection method. We used 50 iterations over the performance evaluation phases to enable a more exact generalization of model performance. In addition, we provided a convenient GitHub-based version of our bitter peptide identification. It highlights the practical applicability of these findings. We are optimistic that the proposed approach might benefit many fields, including healthcare development and nutritional science.
苦肽:一种新的苦肽识别集成模型
苦味肽是产生苦味的短氨基酸链。这些多肽主要是在食品加工过程中通过多肽的化学还原而产生的。苦味来自肽中氨基酸的特定序列,它与人类舌头上的苦味感受器相互作用。这些多肽影响营养和健康,为蛋白质消化和生物活性优势提供了见解。因此,正确识别苦肽对于揭示有效药物的生化特性至关重要。计算方法最适合识别苦味,大多数研究都没有得到足够的结果。因此,目前的研究开发了一个基于集成的框架,称为“BitterEN”,其中我们集成了梯度增强(GB)和多层感知(MLP)方法。与所有最先进的方法相比,我们提出的方法的准确率提高了3%以上,其中所提出的方法在与随机森林(RF)特征选择方法合并的特征提取中达到了0.995的准确率。我们在性能评估阶段使用了50次迭代,以实现更精确的模型性能泛化。此外,我们提供了一个方便的基于github的苦味肽鉴定版本。它突出了这些发现的实际适用性。我们乐观地认为,提出的方法可能会使许多领域受益,包括医疗保健发展和营养科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信