Spatial-frequency dual-domain Kolmogorov–Arnold networks for multimodal medical image fusion

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lewu Lin , Jiaxin Xie , Yingying Wang , Jialing Huang , Rongjin Zhuang , Xiaotong Tu , Xinghao Ding , Na Shen , Qing Lu
{"title":"Spatial-frequency dual-domain Kolmogorov–Arnold networks for multimodal medical image fusion","authors":"Lewu Lin ,&nbsp;Jiaxin Xie ,&nbsp;Yingying Wang ,&nbsp;Jialing Huang ,&nbsp;Rongjin Zhuang ,&nbsp;Xiaotong Tu ,&nbsp;Xinghao Ding ,&nbsp;Na Shen ,&nbsp;Qing Lu","doi":"10.1016/j.neucom.2025.130661","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal Medical Image Fusion (MMIF) can significantly enhance the efficiency and accuracy of clinical diagnosis and treatment by integrating medical images from different modalities into a single image with rich information. Recent advancements in Kolmogorov–Arnold Networks (KAN) have demonstrated significant potential in nonlinear fitting, owing to their ability to decompose complex multivariate functions into simpler univariate functions while maintaining high accuracy and interpretability. While most existing methods focus on developing increasingly complex architectures, addressing MMIF from a frequency analysis perspective and leveraging both spatial and frequency domains for interpretable and effective cross-modal fusion through KAN remains an underexplored frontier in prior research. To address this gap, we introduce Spatial-Frequency Dual-domain KAN (SFDKAN), a novel framework for MMIF. Initially, we apply a Hierarchical Wavelet Decomposition strategy to decompose the input modality into different frequency bands and introduce the powerful nonlinear mapping capability of KAN into the sub-bands of varying frequencies. This approach refines unimodal feature extraction and enhances the retention of high-frequency details and structural integrity. Next, we design a Spatial-Frequency Integration KAN (SFIKAN), leveraging complementary information from both spatial and frequency domains to facilitate effective cross-modality feature interaction and fusion. The Spatial KAN effectively focuses on critical regions in the fusion result, while ignoring irrelevant areas and suppressing redundant information. Meanwhile, the Frequency KAN overcomes the local limitations of the spatial domain, effectively handling long-range dependencies and enhancing global feature representation, thereby enabling more efficient cross-modality feature fusion. Extensive experiments on CI-MRI, PET-MRI, and SPECT-MRI datasets demonstrate the superiority of our method over state-of-the-art (SOTA) medical image fusion algorithms in both quantitative metrics and visual quality. The code will be available at <span><span>https://github.com/xiejiaaax/SFDKAN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"648 ","pages":"Article 130661"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225013335","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal Medical Image Fusion (MMIF) can significantly enhance the efficiency and accuracy of clinical diagnosis and treatment by integrating medical images from different modalities into a single image with rich information. Recent advancements in Kolmogorov–Arnold Networks (KAN) have demonstrated significant potential in nonlinear fitting, owing to their ability to decompose complex multivariate functions into simpler univariate functions while maintaining high accuracy and interpretability. While most existing methods focus on developing increasingly complex architectures, addressing MMIF from a frequency analysis perspective and leveraging both spatial and frequency domains for interpretable and effective cross-modal fusion through KAN remains an underexplored frontier in prior research. To address this gap, we introduce Spatial-Frequency Dual-domain KAN (SFDKAN), a novel framework for MMIF. Initially, we apply a Hierarchical Wavelet Decomposition strategy to decompose the input modality into different frequency bands and introduce the powerful nonlinear mapping capability of KAN into the sub-bands of varying frequencies. This approach refines unimodal feature extraction and enhances the retention of high-frequency details and structural integrity. Next, we design a Spatial-Frequency Integration KAN (SFIKAN), leveraging complementary information from both spatial and frequency domains to facilitate effective cross-modality feature interaction and fusion. The Spatial KAN effectively focuses on critical regions in the fusion result, while ignoring irrelevant areas and suppressing redundant information. Meanwhile, the Frequency KAN overcomes the local limitations of the spatial domain, effectively handling long-range dependencies and enhancing global feature representation, thereby enabling more efficient cross-modality feature fusion. Extensive experiments on CI-MRI, PET-MRI, and SPECT-MRI datasets demonstrate the superiority of our method over state-of-the-art (SOTA) medical image fusion algorithms in both quantitative metrics and visual quality. The code will be available at https://github.com/xiejiaaax/SFDKAN.
多模态医学图像融合的空频双域Kolmogorov-Arnold网络
多模态医学图像融合(MMIF)通过将不同模态的医学图像整合成一张信息丰富的图像,可以显著提高临床诊断和治疗的效率和准确性。Kolmogorov-Arnold网络(KAN)的最新进展在非线性拟合中显示出巨大的潜力,因为它们能够将复杂的多元函数分解成更简单的单变量函数,同时保持高精度和可解释性。虽然大多数现有方法都专注于开发日益复杂的架构,但从频率分析的角度解决MMIF问题,并利用空间和频率域通过KAN进行可解释和有效的跨模态融合,仍然是先前研究中未充分探索的前沿。为了解决这一差距,我们引入了空间-频率双域KAN (SFDKAN),这是一种新的MMIF框架。首先,我们采用层次小波分解策略将输入模态分解成不同的频带,并将KAN强大的非线性映射能力引入到不同频率的子频带中。该方法改进了单峰特征提取,增强了高频细节和结构完整性的保留。接下来,我们设计了一个空间-频率集成KAN (SFIKAN),利用空间和频率域的互补信息来促进有效的跨模态特征交互和融合。该方法有效地聚焦融合结果中的关键区域,忽略无关区域,抑制冗余信息。同时,Frequency KAN克服了空间域的局部限制,有效地处理了远程依赖关系,增强了全局特征表示,从而实现了更高效的跨模态特征融合。在CI-MRI、PET-MRI和SPECT-MRI数据集上进行的大量实验表明,我们的方法在定量指标和视觉质量方面都优于最先进的(SOTA)医学图像融合算法。代码可在https://github.com/xiejiaaax/SFDKAN上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信