TSAD: Temporal–spatial association differences-based unsupervised anomaly detection for multivariate time-series

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hanbing Zhu, Nan Xiao, Hefei Ling, Zongyi Li, Yuxuan Shi, Chuang Zhao, Hongxu Ji, Ping Li, Hui Liu
{"title":"TSAD: Temporal–spatial association differences-based unsupervised anomaly detection for multivariate time-series","authors":"Hanbing Zhu,&nbsp;Nan Xiao,&nbsp;Hefei Ling,&nbsp;Zongyi Li,&nbsp;Yuxuan Shi,&nbsp;Chuang Zhao,&nbsp;Hongxu Ji,&nbsp;Ping Li,&nbsp;Hui Liu","doi":"10.1016/j.neucom.2025.130611","DOIUrl":null,"url":null,"abstract":"<div><div>Modern industrial control systems are vast and intricate, requiring the monitoring of data from numerous interconnected sensors and actuators for precise intrusion and anomaly detection. While unsupervised time series anomaly detection methods based on deep learning effectively capture complex nonlinear contextual dependencies, the anomaly metrics employed by current methods lack contextual anomaly information, thereby hindering the distinction between anomalies and normalies. Addressing this issue, a Temporal–Spatial Association Differences-based Anomaly Detection model (TSAD) is proposed. This model introduces temporal association difference learning, capturing the temporal association distribution of normal sequences while considering temporal association loss to calculate temporal association differences. Additionally, it incorporates spatial association difference learning, capturing the spatial association distribution of normal sequences while considering spatial association loss to calculate spatial association differences. By focusing on extracting temporal–spatial association patterns from multivariate time-series data under normal operating conditions, the model aggregates reconstruction errors and temporal–spatial association differences during testing to detect anomalies using a novel anomaly metric. Experimental results on four real-world datasets (SWaT, WADI, PSM, and MSL) demonstrate the state-of-the-art performance of the approach.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"648 ","pages":"Article 130611"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225012834","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Modern industrial control systems are vast and intricate, requiring the monitoring of data from numerous interconnected sensors and actuators for precise intrusion and anomaly detection. While unsupervised time series anomaly detection methods based on deep learning effectively capture complex nonlinear contextual dependencies, the anomaly metrics employed by current methods lack contextual anomaly information, thereby hindering the distinction between anomalies and normalies. Addressing this issue, a Temporal–Spatial Association Differences-based Anomaly Detection model (TSAD) is proposed. This model introduces temporal association difference learning, capturing the temporal association distribution of normal sequences while considering temporal association loss to calculate temporal association differences. Additionally, it incorporates spatial association difference learning, capturing the spatial association distribution of normal sequences while considering spatial association loss to calculate spatial association differences. By focusing on extracting temporal–spatial association patterns from multivariate time-series data under normal operating conditions, the model aggregates reconstruction errors and temporal–spatial association differences during testing to detect anomalies using a novel anomaly metric. Experimental results on four real-world datasets (SWaT, WADI, PSM, and MSL) demonstrate the state-of-the-art performance of the approach.
基于时空关联差异的多变量时间序列无监督异常检测
现代工业控制系统庞大而复杂,需要监控来自众多互连传感器和执行器的数据,以进行精确的入侵和异常检测。虽然基于深度学习的无监督时间序列异常检测方法可以有效捕获复杂的非线性上下文依赖关系,但当前方法使用的异常度量缺乏上下文异常信息,从而阻碍了异常与正常的区分。针对这一问题,提出了基于时空关联差异的异常检测模型(TSAD)。该模型引入时间关联差异学习,捕捉正态序列的时间关联分布,同时考虑时间关联损失来计算时间关联差异。此外,该方法结合空间关联差异学习,捕捉正态序列的空间关联分布,同时考虑空间关联损失计算空间关联差异。该模型专注于从正常运行条件下的多变量时间序列数据中提取时空关联模式,并在测试过程中汇总重建误差和时空关联差异,使用一种新的异常度量来检测异常。在四个真实数据集(SWaT、WADI、PSM和MSL)上的实验结果证明了该方法的最先进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信