{"title":"An inversion-based group decision-making method for evaluating industrial information platforms","authors":"Chuan Yue","doi":"10.1016/j.jii.2025.100881","DOIUrl":null,"url":null,"abstract":"<div><div>Quality evaluation of industrial information platforms represents a typical multi-dimensional decision-making problem that requires comprehensive integration of multi-stakeholder perspectives. This paper proposes a novel group decision-making evaluation framework with two key innovations: (1) The introduction of the inversion number concept from linear algebra to quantify evaluators’ data quality, combined with median statistics to establish a dynamic weight allocation mechanism for decision-makers; (2) Building upon the traditional VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods’ group utility measure, this work innovatively incorporates group regret and group satisfaction matrices, constructing a tripartite “utility-regret-satisfaction” evaluation system through a normalized projection technology, thereby forming an extended VIKOR decision architecture. The proposed method’s feasibility and practicality are validated through a case study on industrial information platform assessment. Experiments demonstrate that: (i) Different data centers can lead to distinct decision outcomes; (ii) Different measures can lead to different decision outcomes; (iii) The inversion-based data quality metric outperforms entropy-based alternatives (with 10% accuracy improvement); (iv) Alternative rankings maintain 70%–100% stability intervals. This research provides a quantifiable, highly robust theoretical tool for multi-attributes decision-making in complex industrial systems.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"47 ","pages":"Article 100881"},"PeriodicalIF":10.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X25001049","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Quality evaluation of industrial information platforms represents a typical multi-dimensional decision-making problem that requires comprehensive integration of multi-stakeholder perspectives. This paper proposes a novel group decision-making evaluation framework with two key innovations: (1) The introduction of the inversion number concept from linear algebra to quantify evaluators’ data quality, combined with median statistics to establish a dynamic weight allocation mechanism for decision-makers; (2) Building upon the traditional VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods’ group utility measure, this work innovatively incorporates group regret and group satisfaction matrices, constructing a tripartite “utility-regret-satisfaction” evaluation system through a normalized projection technology, thereby forming an extended VIKOR decision architecture. The proposed method’s feasibility and practicality are validated through a case study on industrial information platform assessment. Experiments demonstrate that: (i) Different data centers can lead to distinct decision outcomes; (ii) Different measures can lead to different decision outcomes; (iii) The inversion-based data quality metric outperforms entropy-based alternatives (with 10% accuracy improvement); (iv) Alternative rankings maintain 70%–100% stability intervals. This research provides a quantifiable, highly robust theoretical tool for multi-attributes decision-making in complex industrial systems.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.