Typicality of operators on Fréchet algebras admitting a hypercyclic algebra

IF 1.5 1区 数学 Q1 MATHEMATICS
William Alexandre , Clifford Gilmore , Sophie Grivaux
{"title":"Typicality of operators on Fréchet algebras admitting a hypercyclic algebra","authors":"William Alexandre ,&nbsp;Clifford Gilmore ,&nbsp;Sophie Grivaux","doi":"10.1016/j.aim.2025.110406","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to the study of typical properties (in the Baire Category sense) of certain classes of continuous linear operators acting on Fréchet algebras, endowed with the topology of pointwise convergence. Our main results show that within natural Polish spaces of continuous operators acting on the algebra <span><math><mi>H</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of entire functions on <span><math><mi>C</mi></math></span>, a typical operator supports a hypercyclic algebra. We also investigate the case of the complex Fréchet algebras <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>+</mo><mo>∞</mo></math></span>, or <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> endowed with the coordinatewise product, and show that whenever <span><math><mi>M</mi><mo>&gt;</mo><mn>1</mn></math></span>, a typical operator on <em>X</em> of norm less than or equal to <em>M</em> admits a hypercyclic algebra.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110406"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003044","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the study of typical properties (in the Baire Category sense) of certain classes of continuous linear operators acting on Fréchet algebras, endowed with the topology of pointwise convergence. Our main results show that within natural Polish spaces of continuous operators acting on the algebra H(C) of entire functions on C, a typical operator supports a hypercyclic algebra. We also investigate the case of the complex Fréchet algebras X=p(N), 1p<+, or X=c0(N) endowed with the coordinatewise product, and show that whenever M>1, a typical operator on X of norm less than or equal to M admits a hypercyclic algebra.
具有超循环代数的fr代数上算子的典型性
本文研究了具有点向收敛拓扑的fr代数上的连续线性算子的典型性质(在Baire范畴意义上)。我们的主要结果表明,在作用于C上的整个函数的代数H(C)的连续算子的自然波兰空间内,一个典型算子支持一个超循环代数。我们还研究了具有坐标积的复fr代数X= p(N), 1≤p<+∞,或X=c0(N)的情况,并证明了当M>;1时,一个范数小于或等于M的X上的典型算子存在一个超循环代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信