CMC hypersurface with finite index in hyperbolic space H4

IF 1.5 1区 数学 Q1 MATHEMATICS
Han Hong
{"title":"CMC hypersurface with finite index in hyperbolic space H4","authors":"Han Hong","doi":"10.1016/j.aim.2025.110408","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove that there are no complete noncompact constant mean curvature hypersurfaces with the mean curvature <span><math><mi>H</mi><mo>&gt;</mo><mn>1</mn></math></span>, finite index and finite topology in hyperbolic space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>. A more general nonexistence result can be proved in a 4-dimensional Riemannian manifold with certain curvature conditions. We also show that 4-manifold with <span><math><mi>Ric</mi><mo>&gt;</mo><mn>1</mn></math></span> does not contain any complete noncompact minimal stable hypersurface with finite topology.</div><div>The proof relies on the <em>μ</em>-bubble initially introduced by Gromov and further developed by Chodosh-Li-Stryker in the context of stable minimal hypersurfaces.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110408"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003068","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that there are no complete noncompact constant mean curvature hypersurfaces with the mean curvature H>1, finite index and finite topology in hyperbolic space H4. A more general nonexistence result can be proved in a 4-dimensional Riemannian manifold with certain curvature conditions. We also show that 4-manifold with Ric>1 does not contain any complete noncompact minimal stable hypersurface with finite topology.
The proof relies on the μ-bubble initially introduced by Gromov and further developed by Chodosh-Li-Stryker in the context of stable minimal hypersurfaces.
双曲空间H4中有限指数的CMC超曲面
本文证明了双曲空间H4中不存在具有平均曲率H>;1、有限指标和有限拓扑的完全非紧常平均曲率超曲面。在具有一定曲率条件的四维黎曼流形中可以证明一个更一般的不存在性结果。我们还证明了具有Ric>;1的4流形不包含任何具有有限拓扑的完全非紧极小稳定超曲面。该证明依赖于最初由Gromov引入并由Chodosh-Li-Stryker在稳定极小超曲面的背景下进一步发展的μ泡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信