Classification of animal species using efficient neuron attention stage-by-stage network

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Lingaraj A. Hadimani , Manjunath R. Hudagi , Sachin Urabinahatti , Sanjeevkumar Angadi , Basavaraj A. Patil
{"title":"Classification of animal species using efficient neuron attention stage-by-stage network","authors":"Lingaraj A. Hadimani ,&nbsp;Manjunath R. Hudagi ,&nbsp;Sachin Urabinahatti ,&nbsp;Sanjeevkumar Angadi ,&nbsp;Basavaraj A. Patil","doi":"10.1016/j.engappai.2025.111488","DOIUrl":null,"url":null,"abstract":"<div><div>Classifying animal species is crucial for understanding their evolutionary relationships and characteristics. This article introduces the Efficient Neuron Attention Stage-by-Stage Network (ENAS-Net) for animal species classification. The process involves obtaining animal images from a database, applying anisotropic diffusion for noise reduction, and using O-SegNet for segmentation. Image augmentation techniques like colour augmentation, flipping, and rotation are used to enhance performance. Features are extracted using Entropy-based Opponent Color Local Binary Pattern (E-OCLBP) and Convolutional Neural Network (CNN). The ENAS-Net is a combination of Neural Architecture Search Network (NASNet) and EfficientNet. Moreover, for dataset 1, the ENAS-Net recorded an accuracy of 91.405 %, a True Positive Rate (TPR) of 92.045 %, and a True Negative Rate (TNR) of 91.549 %. For dataset 2, the proposed approach demonstrated strong performance, achieving an accuracy rate of 92.172 %. Additionally, it maintained a TPR of 92.994 %, effectively identifying relevant instances, while sustaining a TNR of 92.452 %, minimizing false detections.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"158 ","pages":"Article 111488"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625014903","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Classifying animal species is crucial for understanding their evolutionary relationships and characteristics. This article introduces the Efficient Neuron Attention Stage-by-Stage Network (ENAS-Net) for animal species classification. The process involves obtaining animal images from a database, applying anisotropic diffusion for noise reduction, and using O-SegNet for segmentation. Image augmentation techniques like colour augmentation, flipping, and rotation are used to enhance performance. Features are extracted using Entropy-based Opponent Color Local Binary Pattern (E-OCLBP) and Convolutional Neural Network (CNN). The ENAS-Net is a combination of Neural Architecture Search Network (NASNet) and EfficientNet. Moreover, for dataset 1, the ENAS-Net recorded an accuracy of 91.405 %, a True Positive Rate (TPR) of 92.045 %, and a True Negative Rate (TNR) of 91.549 %. For dataset 2, the proposed approach demonstrated strong performance, achieving an accuracy rate of 92.172 %. Additionally, it maintained a TPR of 92.994 %, effectively identifying relevant instances, while sustaining a TNR of 92.452 %, minimizing false detections.
基于高效神经元注意分阶段网络的动物物种分类
对动物物种进行分类对于了解它们的进化关系和特征至关重要。本文介绍了用于动物物种分类的高效神经元注意分阶段网络(ENAS-Net)。该过程包括从数据库中获取动物图像,应用各向异性扩散进行降噪,并使用O-SegNet进行分割。图像增强技术,如色彩增强、翻转和旋转,用于增强性能。使用基于熵的对手颜色局部二值模式(E-OCLBP)和卷积神经网络(CNN)提取特征。ENAS-Net是神经架构搜索网络(NASNet)和效率网络的结合。此外,对于数据集1,ENAS-Net记录的准确率为91.405%,真阳性率(TPR)为92.045%,真阴性率(TNR)为91.549%。对于数据集2,该方法表现出较强的性能,准确率达到92.172%。此外,它保持了92.994%的TPR,有效地识别了相关实例,同时保持了92.452%的TNR,最大限度地减少了错误检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信