FPINN-deeponet: A physics-informed operator learning framework for multi-term time-fractional mixed diffusion-wave equations

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Binghang Lu , ZhaoPeng Hao , Christian Moya , Guang Lin
{"title":"FPINN-deeponet: A physics-informed operator learning framework for multi-term time-fractional mixed diffusion-wave equations","authors":"Binghang Lu ,&nbsp;ZhaoPeng Hao ,&nbsp;Christian Moya ,&nbsp;Guang Lin","doi":"10.1016/j.jcp.2025.114184","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a physics-informed deep operator learning framework for solving multi-term time-fractional mixed diffusion-wave equations (TFMDWEs). We begin by deriving an <span><math><msub><mi>L</mi><mn>2</mn></msub></math></span> approximation, which achieves first-order accuracy for the Caputo fractional derivative of order <span><math><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span>. Building upon this foundation, we propose the fPINN-DeepONet framework, a novel approach that integrates operator learning with the <span><math><msub><mi>L</mi><mn>2</mn></msub></math></span> approximation to efficiently solve fractional partial differential equations (FPDEs). Our framework is successfully applied to both fixed and variable fractional-order PDEs, demonstrating the framework’s versatility and broad applicability. To evaluate the performance of the proposed model, we conduct a series of numerical experiments that involve dynamically varying fractional orders in both space and time, as well as scenarios with noisy data. These results highlight the accuracy, robustness, and efficiency of the fPINN-DeepONet framework.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"538 ","pages":"Article 114184"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500467X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a physics-informed deep operator learning framework for solving multi-term time-fractional mixed diffusion-wave equations (TFMDWEs). We begin by deriving an L2 approximation, which achieves first-order accuracy for the Caputo fractional derivative of order β(1,2). Building upon this foundation, we propose the fPINN-DeepONet framework, a novel approach that integrates operator learning with the L2 approximation to efficiently solve fractional partial differential equations (FPDEs). Our framework is successfully applied to both fixed and variable fractional-order PDEs, demonstrating the framework’s versatility and broad applicability. To evaluate the performance of the proposed model, we conduct a series of numerical experiments that involve dynamically varying fractional orders in both space and time, as well as scenarios with noisy data. These results highlight the accuracy, robustness, and efficiency of the fPINN-DeepONet framework.
fpin -deeponet:多项时间分数混合扩散波方程的物理信息算子学习框架
在本文中,我们开发了一个基于物理的深度算子学习框架,用于求解多项时间分数混合扩散波方程(TFMDWEs)。我们首先推导一个L2近似,它实现了阶β∈(1,2)的Caputo分数阶导数的一阶精度。在此基础上,我们提出了fPINN-DeepONet框架,这是一种将算子学习与L2近似相结合的新方法,可以有效地求解分数阶偏微分方程(FPDEs)。我们的框架成功地应用于固定和可变分数阶偏微分方程,证明了框架的多功能性和广泛的适用性。为了评估所提出的模型的性能,我们进行了一系列的数值实验,包括在空间和时间上动态变化的分数阶,以及带有噪声数据的场景。这些结果突出了fpin - deeponet框架的准确性、鲁棒性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信