Frieda-Marie Bartz, Kinga Sałat, Katarzyna Urbańska, Jana Lemke, Pascal Rosendahl, Louis Schmidt, Lukas Schulig, Ulrike Garscha, Andreas Link and Patrick J. Bednarski*,
{"title":"New KV7.2/3 Channel Activators Exhibit Superior Toxicity and Metabolic Profiles to Flupirtine and Demonstrate Promising In Vivo Analgesic Effects","authors":"Frieda-Marie Bartz, Kinga Sałat, Katarzyna Urbańska, Jana Lemke, Pascal Rosendahl, Louis Schmidt, Lukas Schulig, Ulrike Garscha, Andreas Link and Patrick J. Bednarski*, ","doi":"10.1021/acschemneuro.5c0027810.1021/acschemneuro.5c00278","DOIUrl":null,"url":null,"abstract":"<p >The first-in-class K<sub>V</sub>7.2/3 channel activator flupirtine, was considered a potent analgesic in various pain conditions. However, it was withdrawn from the market in 2018 due to severe hepatotoxicity associated with forming reactive metabolites. In this work, we present new K<sub>V</sub>7.2/3 channel modulators that have been evaluated in several preclinical mouse pain models, including acute thermally and chemically induced pain, diabetes-induced neuropathic pain, and chemotherapy-induced peripheral neuropathy. In addition, the new K<sub>V</sub>7.2/3 channel activators were compared with the reference substances flupirtine, retigabine, and azetukalner, focusing on the inhibition of the hERG channel, nephrotoxicity, metabolic stability, and the formation of reactive metabolites. A flupirtine analog with a pyrimidine scaffold (<b>8</b>) showed clear advantages over the reference compounds tested, with a favorable toxicity profile, a 2 h <i>in vitro</i> half-life when incubated with human liver microsomes, and a 9-fold reduction in the formation of reactive metabolites compared to flupirtine. This compound also demonstrated strong <i>in vivo</i> efficacy in pain models, making it a promising candidate for further development of K<sub>V</sub>7.2/3 channel activators.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 12","pages":"2322–2333 2322–2333"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.5c00278","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The first-in-class KV7.2/3 channel activator flupirtine, was considered a potent analgesic in various pain conditions. However, it was withdrawn from the market in 2018 due to severe hepatotoxicity associated with forming reactive metabolites. In this work, we present new KV7.2/3 channel modulators that have been evaluated in several preclinical mouse pain models, including acute thermally and chemically induced pain, diabetes-induced neuropathic pain, and chemotherapy-induced peripheral neuropathy. In addition, the new KV7.2/3 channel activators were compared with the reference substances flupirtine, retigabine, and azetukalner, focusing on the inhibition of the hERG channel, nephrotoxicity, metabolic stability, and the formation of reactive metabolites. A flupirtine analog with a pyrimidine scaffold (8) showed clear advantages over the reference compounds tested, with a favorable toxicity profile, a 2 h in vitro half-life when incubated with human liver microsomes, and a 9-fold reduction in the formation of reactive metabolites compared to flupirtine. This compound also demonstrated strong in vivo efficacy in pain models, making it a promising candidate for further development of KV7.2/3 channel activators.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research