Multi-Task Learning in Homogeneous Catalysis: A Case Study for Predicting the Catalytic Performance in Ethylene Polymerization

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zubair Sadiq, Wenhong Yang, Weisheng Yang, Wen-Hua Sun
{"title":"Multi-Task Learning in Homogeneous Catalysis: A Case Study for Predicting the Catalytic Performance in Ethylene Polymerization","authors":"Zubair Sadiq,&nbsp;Wenhong Yang,&nbsp;Weisheng Yang,&nbsp;Wen-Hua Sun","doi":"10.1002/jcc.70157","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study focuses on training a multi-task learning (MTL) type machine learning (ML) model to predict diverse catalytic performance of 195 bis(imino)pyridine transition metal complexes toward ethylene polymerization, with comparison to their single-task learning (STL) counterparts. The <i>CatBoost</i> MTL model outperforms all other models, showing predictions and generalization errors for the properties of catalytic activity (<i>R</i><sub><i>t</i></sub><sup>2</sup>=0.741, <i>R</i><sup>2</sup> = 0.985, <i>Q</i><sup>2</sup> = 0.600), molecular weight (<i>R</i><sub><i>t</i></sub><sup>2</sup>=0.873, <i>R</i><sup>2</sup> = 0.997, <i>Q</i><sup>2</sup> = 0.846), molecular weight distribution (<i>R</i><sub><i>t</i></sub><sup>2</sup>=0.831, <i>R</i><sup>2</sup> = 0.999, <i>Q</i><sup>2</sup> = 0.839), and melting temperature (<i>R</i><sub><i>t</i></sub><sup>2</sup>=0.813, <i>R</i><sup>2</sup> = 0.992, Q<sup>2</sup> = 0.625) of the produced polymer. The interpretation of the model reveals that complexes with electron-donating groups, simple alkyl groups (such as methyl groups etc.), and a higher degree of unsaturation (presence of double or triple bonds) positively influence the predicted properties. Subsequently, providing insights into the underlying mechanisms of variation in catalytic performance, new complexes are designed with superior catalytic performances.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 17","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70157","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on training a multi-task learning (MTL) type machine learning (ML) model to predict diverse catalytic performance of 195 bis(imino)pyridine transition metal complexes toward ethylene polymerization, with comparison to their single-task learning (STL) counterparts. The CatBoost MTL model outperforms all other models, showing predictions and generalization errors for the properties of catalytic activity (Rt2=0.741, R2 = 0.985, Q2 = 0.600), molecular weight (Rt2=0.873, R2 = 0.997, Q2 = 0.846), molecular weight distribution (Rt2=0.831, R2 = 0.999, Q2 = 0.839), and melting temperature (Rt2=0.813, R2 = 0.992, Q2 = 0.625) of the produced polymer. The interpretation of the model reveals that complexes with electron-donating groups, simple alkyl groups (such as methyl groups etc.), and a higher degree of unsaturation (presence of double or triple bonds) positively influence the predicted properties. Subsequently, providing insights into the underlying mechanisms of variation in catalytic performance, new complexes are designed with superior catalytic performances.

Abstract Image

Abstract Image

均相催化中的多任务学习:预测乙烯聚合催化性能的案例研究
本研究的重点是训练一个多任务学习(MTL)型机器学习(ML)模型来预测195双(亚胺)吡啶过渡金属配合物对乙烯聚合的不同催化性能,并与单任务学习(STL)配合物进行比较。CatBoost MTL模型在催化活性(Rt2=0.741, R2 = 0.985, Q2 = 0.600)、分子量(Rt2=0.873, R2 = 0.997, Q2 = 0.846)、分子量分布(Rt2=0.831, R2 = 0.999, Q2 = 0.839)和熔融温度(Rt2=0.813, R2 = 0.992, Q2 = 0.625)等方面的预测和泛化误差优于所有其他模型。对该模型的解释表明,具有供电子基团、简单烷基(如甲基等)和较高不饱和程度(存在双键或三键)的配合物对预测性质有积极影响。随后,为深入了解催化性能变化的潜在机制,设计出具有优越催化性能的新配合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信